Modular Forms on Half-Spaces of Quaternions

  • PDF / 11,914,291 Bytes
  • 217 Pages / 468 x 684 pts Page_size
  • 23 Downloads / 293 Views

DOWNLOAD

REPORT


1143 Aloys Krieg

Modular Forms on Half-Spaces of Quaternions

Springer-Verlag Berlin Heidelberg New York Tokyo

Author

Aloys Krieg Mathematisches Institut der Westfalischen Wilhelms-Universitat Einsteinstr. 62, 4400 Munster, Federal Republic of Germany

Mathematics Subject Classification (1980): 10020 ISBN 3-540-15679-8 Springer-Verlag Berlin Heidelberg New York Tokyo ISBN 0-387-15679-8 Springer-Verlag New York Heidelberg Berlin Tokyo

Library of Congress Cataloging-in-Publication Data. Krieg, Aloys, 1955 - Modular forms on halfspaces of quaternions. (Lecture notes in mathematics; 1143) Bibliography: p. Includes index. 1. Forms, Modular. 2. Quaternions. I. Title II. Series: Lecture notes in mathematics (SpringerVerlag; 1143. QA.L28 no. 1143 520 s 85-17284 [QA243] [512'.522] ISBN 0-387-15679-8 (U.S.) This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks. Under § 54 of the German Copyright Law where copies are made for other than private use, a fee is payable to "Verwertungsgesellschaft Wort", Munich.

© by Springer-Verlag Berlin Heidelberg 1985 Printed in Germany Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr. 2146/3140-543210

Table of contents v

Introduction Notations

XIII

Chapter I

Integral and Hermitian matrices

1

§1 §2 §3 §4 §5

Orderings

2

Hermitian matrices

14 20

MINKOWSKI's reduction theory

28

Applications of reduction theory

37

Chapter II

Modular group and fundamental domain

§1 §2 §3 §4

Symplectic group and half-space

42 43 54

Integral matrices

Modular group The fundamental domain

F(n;F)

58

Congruence subgroups

67

Chapter III

Modular forms

71

§1 §2 §3

Analytic class invariants

72

The vector space of modular forms

83

Modular forms with respect to congruence 92

subgroups

§4

Relations between SIEGEL modular forms, Hermitian modular forms and modular forms

96

of quaternions

99

Chapter IV

Theta-series

§1 §2 §3

Elementary properties of theta-series Theta-series as modular forms

100 110

Theta-series with respect to even quadratic forms

117

§4

Singular modular forms

126

Chapter V

EISENSTEIN- and POINCARE -series

136

§1 §2 §3 §4 §5

Integrals

137

EISENSTEIN-series

145

,

POINCARE -series

157

Metrization

166

Algebraical independence

174

IV

Chapter VI §1 §2 §3

Modular functions The field of modular functions Modular functions with respect to congruence subgroups and symmetric modular functions

182 183 189

Relations between SIEGEL modular functions, Hermitian modular functions and modular functions of quaternions

192

Bibliography

196

List of symbols

200

Index

202

Introduction The mathematical background

The theory of elliptic modular forms and functions developed from 19 t h century. One pro-

the investigation of elliptic functions in the ceeds from the upper half H:={z=x+iyElt;y>O}

(1)

in

It

By me