Molecular Mechanisms Underlying Beta-Arrestin-Dependent Chemotaxis and Actin-Cytoskeletal Reorganization

β-Arrestins play a crucial role in cell migration downstream of multiple G-protein-coupled receptors (GPCRs) through multiple mechanisms. There is considerable evidence that β-arrestin-dependent scaffolding of actin assembly proteins facilitates the forma

  • PDF / 271,186 Bytes
  • 19 Pages / 439.37 x 666.142 pts Page_size
  • 42 Downloads / 153 Views

DOWNLOAD

REPORT


Contents 1 β-Arrestins as Regulators of Cell Migration: Receptor Turnover Versus Scaffolding of Actin Assembly Proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1 Regulation of Receptor Turnover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 Regulation of Actin Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2.1 Regulation of the Cofilin Pathway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2.2 Filamin and Other Actin-Bundling Proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Chemokine Receptors: The Classic Chemotactic Receptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 β-Arrestin-Dependent Signaling by Chemotactic Receptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1 β-Arrestin-Dependent ERK1/2 Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 β-Arrestin-Dependent Regulation of Src and Chemotaxis . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 RhoA GTPases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Role of β-Arrestin-Dependent Chemotaxis in Health and Disease . . . . . . . . . . . . . . . . . . . . . . . . 5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

342 342 345 346 347 348 350 350 351 352 353 355 355

Abstract β-Arrestins play a crucial role in cell migration downstream of multiple G-protein-coupled receptors (GPCRs) through multiple mechanisms. There is considerable evidence that β-arrestin-dependent scaffolding of actin assembly proteins facilitates the formation of a leading edge in response to a chemotactic signal. Conversely, there is substantial support for the hypothesis that β-arrestins facilitate receptor turnover through their ability to desensitize and internalize GPCRs. This chapter discusses both theories for β-arrestin-dependent chemotaxis in the context K.W. McGovern Biochemistry and Molecular Biology Graduate Program, University of California, Riverside, CA, USA K.A. DeFea (*) Biochemistry and Molecular Biology Graduate Program, University of California, Riverside, CA, USA Biomedical Sciences Division, University of California, Riverside, CA, USA e-mail: [email protected] V.V. Gurevich (ed.), Arrestins - Pharmacology and Therapeutic Potential, Handbook of Experimental Pharmacology 219, DOI 10.1007/978-3-642-41199-1_17, © Springer-Verlag Berlin Heidelberg 2014

341

342

K.W. McGovern and K.A. DeF