MRS Communications

  • PDF / 2,326,876 Bytes
  • 3 Pages / 585 x 783 pts Page_size
  • 47 Downloads / 200 Views

DOWNLOAD

REPORT


PROSPECTIVES Towards biomimetic electronics that emulate cells Claudia Lubrano, Istituto Italiano di Tecnologia, and Università degli Studi di Napoli Federico II, Italy; Giovanni Maria Matrone, Istituto Italiano di Tecnologia, Italy; Csaba Forro, Istituto Italiano di Tecnologia, Italy, and Stanford University, USA; Zeinab Jahed, Stanford University, USA; Andreas Offenhaeusser, Forschungszentrum Jülich GmbH, Germany; Alberto Salleo, Bianxiao Cui, Stanford University, USA; Francesca Santoro, Istituto Italiano di Tecnologia, Italy Bioelectronics aims to design electronic devices that can be fully integrated within tissues to monitor or stimulate specific cell functions. The main challenge is the engineering of the cell–chip interface and diverse materials, and devices have been developed to recapitulate biological architectures and functionalities. The authors give an overview on how the bioelectronics community has exploited biomimetic approaches to emulate cell morphologies, interactions, and functions to design optimal electrical platforms to be coupled to living cells. doi.org/10.1557/mrc.2020.56

Additive manufacturing for COVID-19: Devices, materials, prospects, and challenges Rigoberto C. Advincula, The University of Tennessee, Knoxville, and Oak Ridge National Laboratory, USA; John Ryan C. Dizon, Bataan Peninsula State University, Philippines; Qiyi Chen, Oak Ridge National Laboratory, USA; Ivy Niu, Jason Chung, Lucas Kilpatrick, Reagan Newman, The University of Tennessee, Knoxville, USA The current COVID-19 pandemic has caused the shortage of personal protective equipment (PPE) where improvised manufacturing, in particular three-dimensional (3D) printing has addressed many needs. The authors discuss the current global crisis, then follow the wide interest in addressing the shortage of medical devices and PPE used for treatment and protection against pathogens. An overview of the 3D printing process with polymer materials is given followed by the different 3D printing projects of PPE and medical devices that emerged for the pandemic (including validation/testing). The potential for rapid prototyping with different polymer materials and eventual high throughput production is emphasized. doi.org/10.1557/mrc.2020.57

Architected mechanical designs in tissue engineering Zacharias Vangelatos, University of California, Berkeley, USA; Chenyan Wang, Zhen Ma, Syracuse University, USA; Costas P. Grigoropoulos, University of California, Berkeley, USA The deeper comprehension of biological phenomena has led to the pursuit of designing and architecting complex biological systems. This has been incorporated through the advances in bioprinting of artificial organs and implants even at microscale. In addition, tissue modeling has been employed to understand and prevent malfunctional and detrimental mechanisms that lead to fatal diseases. Furthermore, the endeavor to convey the mechanical properties of both scaffolds and cells has enabled the unveiling of disease modeling and regenerative

864

medicine. The authors aim to provid