Nanomaterials for Arsenic Remediation with Boosted Adsorption and Photocatalytic Properties

Groundwater contamination with arsenic stems from natural and anthropogenic sources represents one of the most critical environmental and public health problems in many countries. Inorganic and organic arsenic compounds can pose serious health risks to hu

  • PDF / 979,217 Bytes
  • 42 Pages / 439.37 x 666.142 pts Page_size
  • 56 Downloads / 289 Views

DOWNLOAD

REPORT


ntents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Metal-Oxide-Based Nanomaterials for the Adsorption of As Species . . . . . . . . . . . . . . . . . . . . . . . . . . TiO2 Based Materials for the Adsorption of As Species . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Iron-Oxide-Based Materials for the Adsorption of As Species . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Use of Photocatalytic Nanomaterials in As Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TiO2-Based Nanomaterials for Arsenic Removal Through a Photocatalysis Process . . . . . . . Metal Oxide Nanomaterials for the Photocatalytic Removal of Arsenic Compounds Present in Wastewater . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Carbon-Based Nanomaterials for Removing Arsenic from Wastewater and Groundwater: Adsorption and Photo-Oxidation Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Organic Carbon-Based Nanomaterials (O-CBNMs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Synthetic Carbon-Based Nanomaterials (SCBNMs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 4 5 12 15 16 22 30 31 33 36 37

Abstract

Groundwater contamination with arsenic stems from natural and anthropogenic sources represents one of the most critical environmental and public health problems in many countries. Inorganic and organic arsenic compounds can pose serious health risks to humans. Traditional techniques, such as the oxidation L. Hinojosa-Reyes (*) · A. Hernández-Ramírez Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, UANL, San Nicolás de los Garza, Mexico e-mail: [email protected] M. Hinojosa-Reyes Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico V. Rodríguez-González División de Materiales Avanzados, Instituto Potosino de Investigación Científica y Tecnológica, IPICYT, San Luis Potosí, Mexico © Springer Nature Switzerland AG 2020 O. V. Kharissova et al. (eds.), Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications, https://doi.org/10.1007/978-3-030-11155-7_78-1

1

2

L. Hinojosa-Reyes et al.

process, membrane filtration, adsorption, and chemical precipitation, among others, are used for removing both forms of arsenic species. However, effec