Photocatalytic Nanomaterials for Bacterial Disinfection
With rapidly growing urbanization and industrialization in developing countries around the world, a large volume of wastewater is produced by industries that contain waterborne diseases, and photocatalysis is confirmed as a promising technology for water
- PDF / 590,415 Bytes
- 31 Pages / 439.37 x 666.142 pts Page_size
- 22 Downloads / 189 Views
Photocatalytic Nanomaterials for Bacterial Disinfection Teklit Gebregiorgis Ambaye, Mentore Vaccari, and Eric D. van Hullebusch
Contents 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.2 Nanostructured Materials for Water Disinfection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.2.1 Zero-Dimensional Nanostructures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.2.2 One-Dimensional Nanostructures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.2.3 Two-Dimensional Nanostructured Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.3 Natural Minerals as Photocatalysts for Water Disinfection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.4 Mechanisms of the Photocatalytic Disinfection of Bacteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.5 The Effect of the Water Matrix on the Disinfection Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.5.1 Factors Affecting Water Mix Property on the Water Disinfection Process . . . . . . 7.6 Supported Catalysts for Water/Wastewater Disinfection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.6.1 Electrocoagulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.6.2 Direct Oxidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.6.3 Indirect Electro-oxidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.7 Future Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
216 219 219 220 223 226 227 228 228 229 230 232 232 233 234 235
T. G. Ambaye (*) Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Brescia, Italy Department of Chemistry, Mekelle University, Mekelle, Ethiopia e-mail: [email protected] M. Vaccari Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Brescia, Italy e-mail: [email protected] E. D. van Hullebusch Université de Paris, Institut de Physique du Globe de Paris, CNRS, Paris, France e-mail: [email protected] © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springe
Data Loading...