Nanoscale Devices Fabrication, Functionalization, and Accessibility

The evolution of the microelectronics is controlled by the idea of scaling. However, the scaling of the device size below 10 nm is expected to be impossible because of physical, technological and economic reasons. Fundamental considerations (based on Heis

  • PDF / 6,042,574 Bytes
  • 211 Pages / 439.37 x 666.142 pts Page_size
  • 35 Downloads / 268 Views

DOWNLOAD

REPORT


NanoScience and Technology Series Editors: P. Avouris B. Bhushan D. Bimberg K. von Klitzing H. Sakaki R. Wiesendanger The series NanoScience and Technology is focused on the fascinating nano-world, mesoscopic physics, analysis with atomic resolution, nano and quantum-effect devices, nanomechanics and atomic-scale processes. All the basic aspects and technology-oriented developments in this emerging discipline are covered by comprehensive and timely books. The series constitutes a survey of the relevant special topics, which are presented by leading experts in the f ield. These books will appeal to researchers, engineers, and advanced students.

Please view available titles in NanoScience and Technology on series homepage http://www.springer.com/series/3705/

Gianfranco Cerofolini

Nanoscale Devices Fabrication, Functionalization, and Accessibility from the Macroscopic World

With 84 Figures

123

Dr. Gianfranco Cerofolini Università di Milano-Bicocca Dipartimento Scienza dei Materiali Via Roberto Cozzi 53, 20125 Milano, Italy E-mail: [email protected]

Series Editors:

Professor Dr. Phaedon Avouris IBM Research Division Nanometer Scale Science & Technology Thomas J. Watson Research Center P.O. Box 218 Yorktown Heights, NY 10598, USA

Professor Dr., Dres. h.c. Klaus von Klitzing Max-Planck-Institut für Festkörperforschung Heisenbergstr. 1 70569 Stuttgart, Germany

Professor Dr. Bharat Bhushan

Professor Hiroyuki Sakaki

Ohio State University Nanotribology Laboratory for Information Storage and MEMS/NEMS (NLIM) Suite 255, Ackerman Road 650 Columbus, Ohio 43210, USA

University of Tokyo Institute of Industrial Science 4-6-1 Komaba, Meguro-ku Tokyo 153-8505, Japan

Professor Dr. Dieter Bimberg TU Berlin, Fakutät Mathematik/ Naturwissenschaften Institut für Festkörperphyisk Hardenbergstr. 36 10623 Berlin, Germany

Professor Dr. Roland Wiesendanger Institut für Angewandte Physik Universität Hamburg Jungiusstr. 11 20355 Hamburg, Germany

NanoScience and Technology ISSN 1434-4904 ISBN 978-3-540-92731-0 e-ISBN 978-3-540-92732-7 DOI 10.1007/978-3-540-92732-7 Springer Dordrecht Heidelberg London New York Library of Congress Control Number: 2009929175 c Springer-Verlag Berlin Heidelberg 2009  This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore