Neutron star merger remnants

  • PDF / 1,770,606 Bytes
  • 40 Pages / 439.37 x 666.142 pts Page_size
  • 9 Downloads / 228 Views

DOWNLOAD

REPORT


Neutron star merger remnants Sebastiano Bernuzzi1 Received: 21 April 2020 / Accepted: 9 October 2020 / Published online: 10 November 2020 © The Author(s) 2020

Abstract Binary neutron star mergers observations are a unique way to constrain fundamental physics and astrophysics at the extreme. The interpretation of gravitational-wave events and their electromagnetic counterparts crucially relies on general-relativistic models of the merger remnants. Quantitative models can be obtained only by means of numerical relativity simulations in 3 + 1 dimensions including detailed input physics for the nuclear matter, electromagnetic and weak interactions. This review summarizes the current understanding of merger remnants focusing on some of the aspects that are relevant for multimessenger observations. Keywords Binary neutron star · Mergers · Remnants · Gravitational waves · Numerical relativity

Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2

2 Merger dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4

3 Prompt collapse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9

4 Remnant black holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10

5 Remnant neutron stars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11

6 Remnant discs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

18

7 Mass ejecta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

21

8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

26

A Appendix A: Numerical-relativity methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

28

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

30

This article belongs to a Topical Collection: Binary Neutron Star mergers.

B 1

Sebastiano Bernuzzi [email protected] Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena, Germany

123

108

Page 2 of 40

S. Bernuzzi

1 Introduction The gravitational-wave GW170817 is compatible with a binary neutron star (BNS) inspiral of chirp mass 1.186(1)M [1–3]. Significant signal-to-noise ratio (SNR) is found in the frequency range 30–600 Hz, roughly corresponding to the last thousand orbits to merger for an equal-mass binary with canonical mass M ∼ 2.8 M . The matched-filtering analysis of GW170817 with tidal waveform templates provides us with an estimate of the reduced tidal parameter that is distributed around Λ˜ ∼ 300 and smaller than ∼800 [4–7]. LIGO-Virgo searches for short (1 s), intermediate (500 s) and long (days) postmerger transients from a neutron star (NS) remnant resulted in upper limits of more than one order of magnitude larger than those predicted by basic models of quasi-period