Optical Metamaterials Fundamentals and Applications

Metamaterials—artificially structured materials with engineered electromagnetic properties—have enabled unprecedented flexibility in manipulating electromagnetic waves and producing new functionalities. In just a few years, the field of optical metamateri

  • PDF / 6,239,338 Bytes
  • 207 Pages / 444.579 x 648.722 pts Page_size
  • 20 Downloads / 419 Views

DOWNLOAD

REPORT


0QUJDBM .FUBNBUFSJBMT 'VOEBNFOUBMTBOE"QQMJDBUJPOT

Optical Metamaterials

Wenshan Cai • Vladimir Shalaev

Optical Metamaterials Fundamentals and Applications

123

Dr. W. Cai Stanford University Stanford, CA USA [email protected]

Prof. V. Shalaev Purdue University West Lafayette, IN USA [email protected]

ISBN 978-1-4419-1150-6 e-ISBN 978-1-4419-1151-3 DOI 10.1007/978-1-4419-1151-3 Springer New York Dordrecht Heidelberg London Library of Congress Control Number: 2009936791 c Springer Science+Business Media, LLC 2010 ° All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com)

To my son Sheling, my wife Yun Tai, and to the memory of my mother, Shuxin Wang (1943–2008). – Wenshan Cai To my family and close friends, who keep supporting me through my life and career. – Vladimir M. Shalaev

Preface

This book deals with optical metamaterials – artificially structured materials with nanoscale inclusions and strikingly unconventional properties at optical frequencies. These materials can be treated as macroscopically homogeneous media and can exhibit a variety of unusual and exciting responses to light. Man-made materials with subwavelength inclusions have been purposely utilized by artists and craftsmen for centuries, as indicated by a number of glass vessels ranging from the late Roman era to the Renaissance period. However, optical metamaterials have flourished only in the present century thanks to combined advances in nanofabrication, numerical modeling, and characterization tools. In only a few years, the field of optical metamaterials has emerged as one of the most exciting topics in the science of light, with stunning and unexpected outcomes that have repeatedly fascinated researchers, scientists, and even the general public. The philosophy behind the area of optical metamaterials is distinct from most other branches of optical studies in that it does not emphasize the explanation, implementation, or utilization of known phenomena, but rather it focuses on the creation of entirely new stories and new events that no one has even considered. This philosophy is best illustrated by a simple quotation from Back to Methuselah by George Bernard Shaw, one of the finest playwrights of the twentieth century. The quote became widespread after its adoption by Robe