Perspectives on frontiers in electronic and photonic materials
- PDF / 5,789,180 Bytes
- 8 Pages / 585 x 783 pts Page_size
- 43 Downloads / 197 Views
Perspectives on frontiers in electronic and photonic materials By Andrea Alù, Lincoln J. Lauhon, Xiaoqin Li, Chih-Kang Shih, and Natalie Stingelin
Introduction
Materials research provides the foundation for the development of many new technologies. Basic materials research in the United States is supported by several federal agencies, including the National Science Foundation (NSF), Department of Energy (DOE), and Department of Defense (DoD). Federal agencies play a critical role not only in funding research at universities and national laboratories, but also in forging collaborations with industrial partners. At NSF, the Division of Materials Research (DMR), in particular, is dedicated to advancing fundamental materials research through single investigator grants, as well as through research centers, such as the Materials Research Science and Engineering Centers. To help identify and highlight important emerging areas of materials research, funding agencies often solicit input from the community by holding workshops and conducting outreach at meetings run by the Materials Research Society (MRS) and other professional societies.
The Electronic and Photonic Materials (EPM) Program within NSF DMR sponsored a workshop titled “Current Challenges and Future Opportunities in Electronic and Photonic Materials” on September 25–26, 2017. The goals of the workshop were threefold: (1) to better understand what the community views as current frontiers and future opportunities for electronic and photonic materials research, (2) to assess the community’s readiness to address important national issues and societal needs, and (3) to identify gaps and new areas for EPM research in the near future. The range of materials within the scope of the EPM program is very broad. To allow more in-depth discussions, the workshop focused on four classes of materials: epitaxially grown materials (semiconductors, oxides, and hybrid materials); van der Waals (vdW) materials; organic/flexible materials; and metamaterials. Approximately 30 invited participants attended this workshop and contributed to a written report, which
Discovery Activities
Growth and Processing
Characterization and Modeling
Design Outcomes
Phases and Structures
Properties and Paradigms
Figure 1. Taxonomy for electronic and photonic materials research.
can be found at https://sites.cns.utexas. edu/epm_nsf_workshop. This article reports on the outcomes of the workshop and provides a framework for describing EPM research. It reflects the opinions of the authors and not those of the NSF. We first summarize the authors’ perceptions of major drivers of EPM research and a means of characterizing the scope of activity. We then summarize the workshop discussions of recent breakthroughs, outstanding challenges, possible approaches to address these challenges, and future opportunities associated with the four classes of materials. We conclude by identifying the broader impacts of EPM research, including potential contributions to national initiatives. We aim to provide new s
Data Loading...