Photocatalysis for removal of environmental pollutants and fuel production: a review

  • PDF / 1,244,203 Bytes
  • 23 Pages / 595.276 x 790.866 pts Page_size
  • 45 Downloads / 313 Views

DOWNLOAD

REPORT


REVIEW

Photocatalysis for removal of environmental pollutants and fuel production: a review Anbalagan Saravanan1 · Ponnusamy Senthil Kumar2   · Dai‑Viet N. Vo3 · Ponnambalam Ragini Yaashikaa2 · Suresh Karishma1 · Sathasivam Jeevanantham1 · B. Gayathri1 · V. Dhivya Bharathi1 Received: 28 July 2020 / Accepted: 13 August 2020 © Springer Nature Switzerland AG 2020

Abstract Water pollution and fossil fuels are major issues in the context of climate change. Photocatalysis research is rising to develop green technologies for the remediation of pollutants and for energy production. Photocatalysis converts the light energy as photons into chemical energy using semiconducting materials. Different methods are utilised to synthesise these photocatalytic materials. Metal and coupled metal frameworks are applied for the production of photocatalytic materials. Here we review the synthesis and applications of photocatalysts for environmental decontamination and for production of biodiesel, methanol and hydrogen. Pollutants include dyes, pesticides, herbicides, phenols and antibiotics. Keywords  Photocatalytic removal · Environmental pollutants · Degradation mechanism · Novel photocatalysts · Fuel production Abbreviations 3D ­Fe2O3 Three-dimensional ferric oxide As(V) Arsenate Cr(VI) Hexavalent chromium Na2HAsO4·7H2O Disodium hydrogen arsenate heptahydrate K2Cr2O7 Potassium dichromate PAEC Plasma atomic emission spectroscopy Fe2O3 Ferric oxide TiO2 Titanium dioxide ZnO Zinc oxide CuCo2S4 Copper cobalt sulphide MoSe2/BiVo4 Molybdenum diselenide/bismuth vanadate Bi(NO3)3.H2O Bismuth(III) nitrate monohydrate * Ponnusamy Senthil Kumar [email protected]; [email protected] 1



Department of Biotechnology, Rajalakshmi Engineering College, Chennai 602105, India

2



Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India

3

Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam



NH4VO3 Ammonium metavanadate CO2 Carbon dioxide Cu2+ Copper(II) ion Zn2+ Zinc(II) ion Ni2+ Nickel(II) ion Pb2+ Lead(II) ion Cu(NO3)·3H2O Copper(II) nitrate trihydrate Zn(NO3)2·6H2O Zinc nitrate hexahydrate Ni(NO3)2·6H2O Nickel(II) nitrate hexahydrate Pb(NO3)2 Lead(II) nitrate pH Potential of hydrogen HNO3 Nitric acid Rh–Sb ­TiO2 Rhodium and antimony codoped titanium dioxide RS-TONR/TNT Rhodium/antimony co-doped titanium oxide nanorod and titanate nanotube Cr(III) Trivalent chromium Bi(NO3)3 Bismuth(III) nitrate Na2WO4 Sodium tungstate AgIn5S8 Silver indium sulphide Bi2WO6 Bismuth tungstate FeS2 Iron disulphide BiOCl–Ag–AgBr Bismuth oxychloride silver bromide BiOCl Bismuth oxychloride NaFeS2 Sodium iron disulphide

13

Vol.:(0123456789)



NaNO3 Sodium nitrate TiO2 QD Titanium oxide quantum dots Cu2O NPs Copper oxide nanoparticles Cu2O Cuprous oxide Cu(NO3) Copper(I) nitrate TiO2/MoS2 Titanium oxide molybdenum sulphide TiCl4 Titanium tetrachloride MoS2 Molybdenum sul