Plant Nuclear Transformation

Many of the advances in plant biotechnology have been based on transformation; the ability to introduce DNAs into plant cells to recover whole transgenic plants. For DNA introduction to be successful, it must first pass through the cell wall and then into

  • PDF / 138,548 Bytes
  • 19 Pages / 439.37 x 666.142 pts Page_size
  • 96 Downloads / 202 Views

DOWNLOAD

REPORT


Plant Nuclear Transformation John J. Finer

1.1

Introduction to Plant Transformation

“Transformation” is most simply defined as a “change”. In the plant biotechnology community, transformation can be a little more precisely defined as the process of DNA introduction into a plant cell, leading to a permanent change in the genetic makeup of the target cell and its derivatives. The ability to produce whole plants from transformed plant cells, first reported by Horsch et al. (1985), has revolutionized the plant sciences and changed the face of the planet, through the success and rapid adoption of genetically modified crops. Although the transformation process itself was initially limiting, all crops of major interest have been successfully transformed and many if not most transformation technologies are considered routine. Some crops do remain a little recalcitrant to transformation and improvements in the methods for production of stablytransformed plants are still needed. The current limitations in the production of transgenic plants for both basic research and commercial application include more efficient production of transformed plants and obtaining more predictable insertion and expression of the introduced DNA.

1.1.1

DNA Introduction Basics

DNA introduction can impact and modify any of the organelles within the plant cell that also contain DNA. Suitable targets include the nucleus, plastid and mitochondrion. Plastid transformation is presented in the next part of this chapter while this J.J. Finer Department of Horticulture and Crop Science, Plant Molecular Biology and Biotechnology Program, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA e-mail: [email protected]

F. Kempken and C. Jung (eds.), Genetic Modification of Plants, Biotechnology in Agriculture and Forestry 64, DOI 10.1007/978-3-642-02391-0_1, # Springer-Verlag Berlin Heidelberg 2010

3

4

J.J. Finer

portion of the chapter focuses exclusively on nuclear transformation. Transformation of the mitochondrion has been reported for some organisms (Johnston et al. 1998) but has not yet been reported for higher plants. For (nuclear) transformation to be successful, DNA must first be introduced into the target cell. The DNA molecule is sufficiently large so that a physical entry point through the cell wall and cell membrane must be established and this can compromise the health of the targeted cell. After passage through the plant cell wall and membrane, the introduced DNA must then proceed to the nucleus, pass through the nuclear membrane and become integrated into the genome. It is believed that the introduced DNA can function for a short time in the nucleus as an extrachromosomal entity, but integration into the genetic material of the target cell is necessary for long-term functionality and expression. To recover a transgenic plant, the single cell that is the recipient for DNA introduction must be capable of either forming a whole plant or contributing to the zygote, through e