Polymer-Based Biomaterials: An Emerging Electrochemical Sensor

Driven by the increasing interest in nanotechnology, materials that spontaneously form ordered nanostructures are becoming an important area of investigation. The development of new polymer-based biomaterials relies on knowledge of the underlying relation

  • PDF / 288,624 Bytes
  • 19 Pages / 439.37 x 666.142 pts Page_size
  • 96 Downloads / 247 Views

DOWNLOAD

REPORT


Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Classification of Polymer-Based Biomaterial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Synthetic Polymer-Based Biomaterial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Natural Biomaterial-Based Polymer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Chitosan: Electrochemical Sensing Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Application in Medical Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Application in Environmental Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Future Prospects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 4 4 6 11 13 14 15 16

Abstract

Driven by the increasing interest in nanotechnology, materials that spontaneously form ordered nanostructures are becoming an important area of investigation. The development of new polymer-based biomaterials relies on knowledge of the underlying relations between the properties and the structure of these materials at multiple length scales. On the basis of sources, biomaterial polymer films are categorized into two different classes. In the first class, polymers are made from protein, natural rubber, cellulose, etc. these are also called natural polymers. The second category is largest one; it carries the artificial polymer or synthesized polymer, where natural polymers are chemically treated or synthesized in lab. Among these, chitosan is widely used linear polysaccharide biopolymer derived from chitin by deacetylation, chitosan has numerous advantages as a biomaterial; Chitosan is a unique biopolymer in the respect that it is abundant, cationic, lowtoxic, non-immunogenic, biodegradable, and due to its positive charges at A. Pandey (*) School of Studies in Environmental Chemistry, Jiwaji University, Gwalior, India R. Jain School of Studies in Chemistry, Jiwaji University, Gwalior, India e-mail: [email protected] © Springer Nature Switzerland AG 2020 C. M. Hussain, S. Thomas (eds.), Handbook of Polymer and Ceramic Nanotechnology, https://doi.org/10.1007/978-3-030-10614-0_60-1

1

2

A. Pandey and R. Jain

physiological pH. Chitosan (CHT), as a bio polymer with abundant primary amino groups and hydroxyl groups, is nontoxic, readily deco