3D Echocardiography Provides Highly Accurate 3D Printed Models in Congenital Heart Disease

  • PDF / 1,938,764 Bytes
  • 11 Pages / 595.276 x 790.866 pts Page_size
  • 85 Downloads / 180 Views

DOWNLOAD

REPORT


ORIGINAL ARTICLE

3D Echocardiography Provides Highly Accurate 3D Printed Models in Congenital Heart Disease K. L. Mowers1 · J. B. Fullerton2 · D. Hicks1 · G. K. Singh1 · M. C. Johnson1 · S. Anwar3  Received: 19 February 2020 / Accepted: 16 September 2020 © Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract Cardiac 3D printing is mainly performed from magnetic resonance imaging (MRI) and computed tomography (CT) 3D datasets, though anatomic detail of atrioventricular (AV) valves may be limited. 3D echo provides excellent visualization of AV valves. Thus, we tested the feasibility and accuracy of 3D printing from 3D echo in this pilot series of subjects with congenital heart disease (CHD), with a focus on valve anatomy. Five subjects with CHD were identified. 3D echo data were converted to 3D printable files and printed in collaboration with 3D Systems Healthcare (Golden, Colorado). A novel technique for valve modeling was utilized using commercially available software. Two readers (KM, SA) independently measured valve structures from 3D models and compared to source echo images. 3D printing was feasible for all cases. Table 1 shows measurements comparing 2D echo to 3D models. Bland Altman analysis showed close agreement and no significant bias between 2D and digital 3D models (mean difference 0.0, 95% CI 1.1 to − 1.1) or 2D vs printed 3D models, though with wider limits of agreement (mean difference − 0.3, 95% CI 1.9 to − 2.6). Accuracy of 3D models compared to 2D was within