Analysis of six chloroplast genomes provides insight into the evolution of Chrysosplenium (Saxifragaceae)
- PDF / 6,724,240 Bytes
- 14 Pages / 595.276 x 790.866 pts Page_size
- 77 Downloads / 206 Views
RESEARCH ARTICLE
Open Access
Analysis of six chloroplast genomes provides insight into the evolution of Chrysosplenium (Saxifragaceae) Zhihua Wu1† , Rui Liao1†, Tiange Yang1, Xiang Dong2, Deqing Lan1, Rui Qin1 and Hong Liu1*
Abstract Background: Chrysosplenium L. (Saxifragaceae) is a genus of plants widely distributed in Northern Hemisphere and usually found in moist, shaded valleys and mountain slopes. This genus is ideal for studying plant adaptation to low light conditions. Although some progress has been made in the systematics and biogeography of Chrysosplenium, its chloroplast genome evolution remains to be investigated. Results: To fill this gap, we sequenced the chloroplast genomes of six Chrysosplenium species and analyzed their genome structure, GC content, and nucleotide diversity. Moreover, we performed a phylogenetic analysis and calculated non-synonymous (Ka) /synonymous (Ks) substitution ratios using the combined protein-coding genes of 29 species within Saxifragales and two additional species as outgroups, as well as a pair-wise estimation for each gene within Chrysosplenium. Compared with the outgroups in Saxifragaceae, the six Chrysosplenium chloroplast genomes had lower GC contents; they also had conserved boundary regions and gene contents, as only the rpl32 gene was lost in four of the Chrysosplenium chloroplast genomes. Phylogenetic analyses suggested that the Chrysosplenium separated to two major clades (the opposite group and the alternate group). The selection pressure estimation (Ka/Ks ratios) of genes in the Chrysosplenium species showed that matK and ycf2 were subjected to positive selection. Conclusion: This study provides genetic resources for exploring the phylogeny of Chrysosplenium and sheds light on plant adaptation to low light conditions. The lower average GC content and the lacking gene of rpl32 indicated selective pressure in their unique habitats. Different from results previously reported, our selective pressure estimation suggested that the genes related to photosynthesis (such as ycf2) were under positive selection at sites in the coding region. Keywords: Saxifragaceae, Chrysosplenium, Chloroplast genome, Opposite leaves, Alternate leaves, Phylogenomics
* Correspondence: [email protected] † Zhihua Wu and Rui Liao contributed equally to this work. 1 Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, Hubei, China Full list of author information is available at the end of the article © The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if chan
Data Loading...