CFD-Based Analysis of Heat Exchanging Performance of Rotary Thermal Wheels

The demand for thermal comfort in buildings in hot and humid climates increases progressively. In general, buildings in hot and humid climates spend more than 60% of the total energy cost for the functionality of the air conditioning (AC) system. Hence, i

  • PDF / 435,053 Bytes
  • 11 Pages / 439.37 x 666.142 pts Page_size
  • 7 Downloads / 211 Views

DOWNLOAD

REPORT


CFD-Based Analysis of Heat Exchanging Performance of Rotary Thermal Wheels H. M. D. P. Herath , M. D. A. Wickramasinghe , A. M. C. K. Polgolla, R. A. C. P. Ranasinghe, and M. A. Wijewardane

Abstract The demand for thermal comfort in buildings in hot and humid climates increases progressively. In general, buildings in hot and humid climates spend more than 60% of the total energy cost for the functionality of the air conditioning (AC) system. Hence, it is required to install energy efficient AC systems or integrate energy recovery systems for both new and/or existing AC systems whenever possible, to reduce the energy consumption by the AC system. Integrate a rotary thermal wheel as the energy recovery device of an existing AC system has shown very promising with attractive payback periods of less than 5 years. A rotary thermal wheel can be located in the air handling unit (AHU) of a central AC system to recover the energy available in the return air stream. During this study, a parametric study was performed using a computational fluid dynamics (CFD) software, to determine the optimum design parameters (i.e., rotary speed and parameters of the matrix profile) of a rotary thermal wheel for hot and humid climates. The simulations were performed for a sinusoidal matrix geometry. Variation of sinusoidal matrix parameters, i.e., span length and height, was also analyzed to understand the heat exchanging performance and the induced pressure drop due to the air flow. The results show that the heat exchanging performance increases when increasing the wheel rpm (revolution per minute). However, the heat exchanging performance increment rate decreases when increasing the rpm. As a result, it is more advisable to operate the wheel at a range of 10–20 rpm. For the geometry, it was found that the sinusoidal geometries with lesser spans and higher heights have higher heat exchanging capabilities. Considering the H. M. D. P. Herath (B) · M. D. A. Wickramasinghe · A. M. C. K. Polgolla · R. A. C. P. Ranasinghe · M. A. Wijewardane Department of Mechanical Engineering, University of Moratuwa, Katubedda 10400, Moratuwa, Sri Lanka e-mail: [email protected] A. M. C. K. Polgolla e-mail: [email protected] R. A. C. P. Ranasinghe e-mail: [email protected] M. A. Wijewardane e-mail: [email protected] © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021 J. Littlewood et al. (eds.), Sustainability in Energy and Buildings 2020, Smart Innovation, Systems and Technologies 203, https://doi.org/10.1007/978-981-15-8783-2_8

103

104

H. M. D. P. Herath et al.

sinusoidal profiles analyzed during the study, the geometry with 4 mm height and 3 mm width shows better performance than the other combinations. Keywords Air conditioning · CFD · Energy recovery · Heat exchangers

8.1 Introduction Air conditioning (AC) systems are essential to provide the required thermal comfort for occupants, to improve the productivity. According to the international standards, the indoor air quality has t