Development and utility assessment of a machine learning bloodstream infection classifier in pediatric patients receivin

  • PDF / 551,262 Bytes
  • 9 Pages / 595.276 x 790.866 pts Page_size
  • 42 Downloads / 203 Views

DOWNLOAD

REPORT


RESEARCH ARTICLE

Open Access

Development and utility assessment of a machine learning bloodstream infection classifier in pediatric patients receiving cancer treatments Lillian Sung1* , Conor Corbin2, Ethan Steinberg2, Emily Vettese1, Aaron Campigotto3, Loreto Lecce4, George A. Tomlinson5 and Nigam Shah2

Abstract Background: Objectives were to build a machine learning algorithm to identify bloodstream infection (BSI) among pediatric patients with cancer and hematopoietic stem cell transplantation (HSCT) recipients, and to compare this approach with presence of neutropenia to identify BSI. Methods: We included patients 0–18 years of age at cancer diagnosis or HSCT between January 2009 and November 2018. Eligible blood cultures were those with no previous blood culture (regardless of result) within 7 days. The primary outcome was BSI. Four machine learning algorithms were used: elastic net, support vector machine and two implementations of gradient boosting machine (GBM and XGBoost). Model training and evaluation were performed using temporally disjoint training (60%), validation (20%) and test (20%) sets. The best model was compared to neutropenia alone in the test set. Results: Of 11,183 eligible blood cultures, 624 (5.6%) were positive. The best model in the validation set was GBM, which achieved an area-under-the-receiver-operator-curve (AUROC) of 0.74 in the test set. Among the 2236 in the test set, the number of false positives and specificity of GBM vs. neutropenia were 508 vs. 592 and 0.76 vs. 0.72 respectively. Among 139 test set BSIs, six (4.3%) non-neutropenic patients were identified by GBM. All received antibiotics prior to culture result availability. Conclusions: We developed a machine learning algorithm to classify BSI. GBM achieved an AUROC of 0.74 and identified 4.3% additional true cases in the test set. The machine learning algorithm did not perform substantially better than using presence of neutropenia alone to predict BSI. Keywords: Machine learning, Classifier, Bloodstream infection, Children, Cancer

* Correspondence: [email protected] 1 Division of Haematology/Oncology, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G1X8, Canada Full list of author information is available at the end of the article © The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the