Distributed Coordination of Multi-agent Networks Emergent Problems,
Multi-agent systems have numerous civilian, homeland security, and military applications; however, for all these applications, communication bandwidth, sensing range, power constraints, and stealth requirements preclude centralized command and control. Th
- PDF / 306,420 Bytes
- 17 Pages / 439.37 x 666.142 pts Page_size
- 86 Downloads / 176 Views
1. Agaev, R., Chebotarev, P.: The matrix of maximum out forests of a digraph and its applications. Autom. Remote Control 61(9), 1424–1450 (2000) 2. Agaev, R., Chebotarev, P.: On the spectra of nonsymmetric Laplacian matrices. Linear Algebra Appl. 399, 157–178 (2005) 3. Akar, M., Shorten, R.: Distributed probabilistic synchronization algorithms for communication networks. IEEE Trans. Autom. Control 53(1), 389–393 (2008) 4. Alefeld, G., Schneider, N.: On square roots of M-matrices. Linear Algebra Appl. 42, 119– 132 (1982) 5. Angeli, D., Bliman, P.-A.: Tight estimates for convergence of some non-stationary consensus algorithms. Syst. Control Lett. 57(12), 996–1004 (2008) 6. Angeli, D., Bliman, P.-A.: Convergence speed of unsteady distributed consensus: Decay estimate along the settling spanning–trees. SIAM J. Control Optim. 48(1), 1–32 (2009) 7. Antonelli, G., Chiaverini, S.: Kinematic control of platoons of autonomous vehicles. IEEE Trans. Robot. 22(6), 1285–1292 (2006) 8. Arcak, M.: Passivity as a design tool for group coordination. IEEE Trans. Autom. Control 52(8), 1380–1390 (2007) 9. Arsie, A., Frazzoli, E.: Efficient routing of multiple vehicles with no explicit communications. Int. J. Robust Nonlinear Control 18(2), 154–164 (2008) 10. Axtell, M., Bise, M.E.: Fractional calculus applications in control systems. In: Proceedings of the IEEE National Aerospace and Electronics Conference, pp. 563–566, Dayton, OH, May 1990 11. Bagley, R.L., Torvik, P.J.: Fractional calculus—A different approach to the analysis of viscoelastically damped structures. AIAA J. 21(5), 741–748 (1983) 12. Bagley, R.L., Torvik, P.J.: A theoretical basis for the application of fractional calculus to viscoelasticity. J. Theol. 27(3), 201–210 (1983) 13. Bagley, R.L., Torvik, P.J.: On the fractional calculus model of viscoelastic behavior. J. Theol. 30(1), 133–155 (1986) 14. Bai, H., Arcak, M., Wen, J.T.: Adaptive design for reference velocity recovery in motion coordination. Syst. Control Lett. 57(8), 602–610 (2008) 15. Bai, H., Arcak, M., Wen, J.T.: Adaptive motion coordination: Using relative velocity feedback to track a reference velocity. Automatica 45(4), 1020–1025 (2009) 16. Baldassarre, G., Trianni, V., Bonani, M., Mondada, F., Dorigo, M., Nolfi, S.: Self-organized coordinated motion in groups of physically connected robots. IEEE Trans. Syst. Man Cybern., Part B 37(1), 224–239 (2007) 17. Barbarossa, S., Scutari, G.: Bio-inspired sensor network design. IEEE Signal Process. Mag. 24(3), 26–35 (2007) 18. Barkoulas, J., Labys, W.C., Onochie, J.: Fractional dynamics in international commodity prices. J. Futures Mark. 17(2), 161–189 (1997)
W. Ren, Y. Cao, Distributed Coordination of Multi-agent Networks, Communications and Control Engineering, c Springer-Verlag London Limited 2011 DOI 10.1007/978-0-85729-169-1,
291
292
References
19. Bauso, D., Giarre, L., Pesenti, R.: Non-linear protocols for optimal distributed consensus in networks of dynamic agents. Syst. Control Lett. 55(11), 918–928 (2006) 20. Bauso, D., Giarre, L., Pesenti, R.: Co
Data Loading...