Electrical Energy Storage Using Flywheels
- PDF / 401,990 Bytes
- 3 Pages / 582 x 780 pts Page_size
- 8 Downloads / 207 Views
wrence Berkeley National Laboratory, University of California–Berkeley, Berkeley, CA, 2004; http://certs.lbl.gov/pdf/55718.pdf) (accessed January 2008). 2. Dinorwig Power Station, http://www.fhc.co.uk/dinorwig.htm (accessed January 2008). 3. M.S. Whittingham, R.F. Savinell, T. Zawodzinski, Eds., “Batteries and Fuel Cells”, in Chem. Rev. 104, 4243 (2004). 4. M.S. Whittingham, Prog. Solid State Chem. 12, 41 (1978). 5. D. Linden, T.B. Reddy, Handbook of Batteries (McGraw Hill, New York, ed. 3, 2001). 6. J. M. Tarascon, M. Armand, Nature 414, 359 (2001). 7. Basic Research Needs for Electrical Energy Storage (Office of Basic Energy Sciences, U.S. Department of Energy, Washington, DC, 2007). 8. R. Kötz, M. Carlen, Electrochim. Acta 45, 2483 (2000). 9. G.G. Libowitz, M.S. Whittingham, Materials Science in Energy Technology (Academic Press, New York, 1979). 10. S. Flandois, B. Simon, Carbon 37, 165 (1999). 11. Q. Fan, P.J. Chupas, M.S. Whittingham, Electrochem. Solid-State Lett. 10 (12), A274 (2007). 12. M.S. Whittingham, Science 192, 1126 (1976). 13. M.S. Whittingham, Mater. Res. Bull. 13, 959 (1978). 14. Y. Song, P.Y. Zavalij, M.S. Whittingham, J. Electrochem. Soc. 152, A721 (2005). 15. C.S. Johnson, J.S. Kim, A.J. Kropf, A.J. Kahaian, J.T. Vaughey, L.M.L. Fransson, K. Edström, M.M. Thackeray, Chem. Mater. 15, 2313 (2003). 16. A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, J. Electrochem. Soc. 144, 1188 (1997). 17. A123; www.a123systems.com (accessed January 2008). 18. T. Drezen, N.-H. Kwon, P. Bowenb, I. Teerlinck, M. Isono, I. Exnar, J. Power Sources 174, 949 (2007). 19. Y. Song, P.Y. Zavalij, N.A. Chernova, M.S. Whittingham, Chem. Mater. 17, 1139 (2005). 20. T. Ogasawara, A. Débart, M. Holzapfel, P. Novák, P.G. Bruce, J. Am. Chem. Soc. 128, 1390 (2006). 21. Y. Wang, K. Takahashi, K.H. Lee, G.Z. Cao, Adv. Funct. Mater. 16, 1133 (2006). 22. D.-H. Kim, J. Kim, Electrochem. Solid-State Lett. 9, A439 (2006). 23. A. Windle, private communication. 24. J. Chen, M.S. Whittingham, Electrochem. Commun. 8, 855 (2006). 25. F. Zhou, M. Cococcionic, C. Marianetti, D. Morgan, M. Chen, G. Ceder, Phys. Rev. B 70, 235121 (2004). 26. C.-W. Wang, K.A. Cook, A.M. Sastry, J. Electrochem. Soc. 150, A385 (2003). 27. T. Maxisch, F. Zhou, G. Ceder, Phys. Rev. B 73 (2006). 28. G. Chen, X. Song, T.J. Richardson, Electrochem. Solid-State Lett. 9, A295 (2006). 29. J. Breger, N. Dupre, P.J. Chupas, P.T. Lee, T. Proffen, J. Parise, C.P. Grey, J. Am. Chem. Soc. 127, 7529 (2005). 30. C.P. Grey, N. Dupre, Chem. Rev. 104, 4493 (2004). 31. N.A. Chernova, M.M. Ma, J. Xiao, M.S. Whittingham, J. Breger, C.P. Grey, Chem. Mater. 19, 4682 (2007). 32. V. Petkov, P.Y. Zavalij, S. Lutta, M.S. Whittingham, V. Parvanov, S. Shastri, Phys. Rev. B69, 085410 (2004). o
in acetonitrile or an organic carbonate. There is a desire to move away from the LiPF6 salt, which can produce hydrogen fluoride (HF) in even traces of moisture. This HF can cause dissolution of the cathode metals, the atoms of which then migrate to and react with the lithium–graphite anode, causing signi
Data Loading...