Electrical percolation and fluidity of conductive recycled mortar cement: graphite powder: recycled sand with addition o

  • PDF / 4,260,055 Bytes
  • 14 Pages / 595.276 x 790.866 pts Page_size
  • 45 Downloads / 243 Views

DOWNLOAD

REPORT


Carbon Letters https://doi.org/10.1007/s42823-020-00188-0

ORIGINAL ARTICLE

Electrical percolation and fluidity of conductive recycled mortar cement: graphite powder: recycled sand with addition of industrial waste carbon fiber C. A. Espinoza‑Moreno1 · M. Rodriguez‑Rodriguez1 · M. J. Pellegrini‑Cervantes1 · C. P. Barrios‑Durstewitz1 · R. E. Núñez‑Jaquez1 · H. J. Peinado‑Guevara2 · M. Chinchillas‑Chinchillas1 · G. Fajardo‑San‑Miguel3 Received: 19 March 2020 / Revised: 10 June 2020 / Accepted: 9 September 2020 © Korean Carbon Society 2020

Abstract The use of recycled materials, such as the fine recycled aggregate made from concrete waste and carbon fiber (CF) product of industrial waste, for the manufacture of conductive recycled mortars (CRM), transforms the mortar base cement normally made with cement:sand in a sustainable multifunctional material, conferring satisfactory mechanical and electrical properties for non-structural uses. This action provides ecological benefits, reducing the use of natural fine aggregates from rivers and the amount of concrete waste deposited in landfills resulting from construction waste. In this investigation the effect of the addition of CF on electrical properties in hardened, wet and dry state, electric percolation in dry state and fluidity of the wet mixture of a cement based CRM was evaluated: fine recycled aggregate: graphite powder, CRM specimens with dimensions of 4 × 4 × 16 cm. were manufactured for 3, 7 and 28 days of age and sand/cement ratios = 1.00, graphite/cement = 1.00, water/cement = 0.60 and CF = 0.1, 0.3, 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0% compared to the weight of cement. The results demonstrated the effect of the addition of CF in CRM, reducing fluidity of the mixtures due to the opposition generated by its physical interaction of CF with recycled sand or recycled fine aggregate and graphite powder (GP), in its case, placing the electric percolation percolation at 0.30% and 0.45% of CF for CRM with and without GP, respectively. Increases in electrical conductivity (EC) without the presence of GP are defined by the contact between the CF and the conductive paths formed. In contrast, with the presence of GP, the EC is defined by the contact between the CF and the GP simultaneously, forming conductive routes with greater performance in its EC. Keywords  Multifunctional material · Sustainability · Electrical conductivity · Workability

1 Introduction Cement-based mortars have poor performance in their EC, in dry state they are considered insulating materials, while in wet state they can be classified as semiconductor, * M. J. Pellegrini‑Cervantes [email protected] 1



Facultad de Ingeniería Mochis, Universidad Autónoma de Sinaloa., Fuente de Poseidón y Prol. Ángel Flores S/N, C.P. 81223 Los Mochis, SIN, México

2



Escuela de Ciencias Económicas y Administrativas, Universidad Autónoma de Sinaloa, San Joachín, Guasave, SIN, México

3

Facultad de Ingeniería Civil, Universidad Autónoma de Nuevo León, Av. Universidad S/N, C.U., C.P. 66450 San Nicolás de lo