Materials advances result from study of cold fusion

  • PDF / 1,644,546 Bytes
  • 4 Pages / 585 x 783 pts Page_size
  • 94 Downloads / 153 Views

DOWNLOAD

REPORT


Materials advances result from study of cold fusion By Philip Ball

I

n 1989, electrochemists Stanley Pons and Martin Fleischmann, working at The University of Utah, astounded the scientific world by announcing that they had achieved nuclear fusion of hydrogen isotopes—the process that powers stars—in a simple benchtop experiment. They claimed to have seen evidence of fusion, in particular a heat output greater than the energy input to the apparatus, when they electrolyzed deuterated lithium hydroxide in heavy water using palladium electrodes. The claim created excitement, controversy, and even outrage. For one thing, the “breakthrough” was announced not in a scientific paper but in a press conference—then still a highly irregular departure from scientific protocol. Pons and Fleischmann released only the sketchiest details of their experimental procedure and results for what became known as “cold fusion,” and even these details seemed to change as the claims were probed and challenged. Some other researchers reported similar findings, but several large-scale efforts to replicate the Utah work failed to see “excess heat” or any other evidence of fusion. The work came to be widely regarded as a textbook case of “pathological,” irreproducible science; some even suspected fraud. All the same, cold fusion has never gone away. A few researchers, working at the fringes of the scientific community, have continued to claim to see tantalizing signs that there really is something in it after all. However, the field has never shaken off its bad reputation. There was much surprise when in June, 30 years after the original event, Nature published an article by a team of researchers funded by Google describing renewed searches for

“low-energy” fusion of hydrogen isotopes (deuterium, which has a lower energy threshold for fusion than hydrogen-1) using palladium electrodes.1 The paper reported no evidence of such a process in electrochemical experiments similar to those of Pons and Fleischmann, but it described a low level of fusion from a different experimental setup in which a plasma of deuterium ions surrounded a negatively charged palladium wire. The new findings will not persuade anyone that Pons and Fleischmann were right, but they could give cold fusion a new lease on life. Moreover, the study showed that there are interesting things still to learn about the materials science of the palladium–hydrogen system. That is what attracted materials researcher Yet-Ming Chiang of the Massachusetts Institute of Technology (MIT) in Cambridge, Mass., to the collaboration. Chiang says that he and the other research team members were recruited by Matt Trevithick, a former MIT graduate and now a program manager at Google Research in Mountain View, Calif., who is a co-author of the article. Trevithick had maintained an interest in cold fusion ever since the story broke. Chiang, in contrast, says that he paid it rather little heed at the time, when he had only recently become a faculty member at MIT. At that stage, Chiang was busy with hig