Metagenomic analysis through the extended Burrows-Wheeler transform

  • PDF / 1,958,242 Bytes
  • 25 Pages / 595 x 794 pts Page_size
  • 36 Downloads / 207 Views

DOWNLOAD

REPORT


RESEARCH

Open Access

Metagenomic analysis through the extended Burrows-Wheeler transform Veronica Guerrini1 , Felipe A. Louza2 and Giovanna Rosone1* From Annual Meeting of the Bioinformatics Italian Society (BITS 2019) Palermo, Italy. 26-28 June 2019 *Correspondence: [email protected] 1 Dipartimento di Informatica, Università di Pisa, Largo B. Pontecorvo, 3, Pisa, Italy Full list of author information is available at the end of the article

Abstract Background: The development of Next Generation Sequencing (NGS) has had a major impact on the study of genetic sequences. Among problems that researchers in the field have to face, one of the most challenging is the taxonomic classification of metagenomic reads, i.e., identifying the microorganisms that are present in a sample collected directly from the environment. The analysis of environmental samples (metagenomes) are particularly important to figure out the microbial composition of different ecosystems and it is used in a wide variety of fields: for instance, metagenomic studies in agriculture can help understanding the interactions between plants and microbes, or in ecology, they can provide valuable insights into the functions of environmental communities. Results: In this paper, we describe a new lightweight alignment-free and assembly-free framework for metagenomic classification that compares each unknown sequence in the sample to a collection of known genomes. We take advantage of the combinatorial properties of an extension of the Burrows-Wheeler transform, and we sequentially scan the required data structures, so that we can analyze unknown sequences of large collections using little internal memory. The tool LiME (Lightweight Metagenomics via eBWT) is available at https://github.com/veronicaguerrini/LiME. Conclusions: In order to assess the reliability of our approach, we run several experiments on NGS data from two simulated metagenomes among those provided in benchmarking analysis and on a real metagenome from the Human Microbiome Project. The experiment results on the simulated data show that LiME is competitive with the widely used taxonomic classifiers. It achieves high levels of precision and specificity – e.g. 99.9% of the positive control reads are correctly assigned and the percentage of classified reads of the negative control is less than 0.01% – while keeping a high sensitivity. On the real metagenome, we show that LiME is able to deliver (Continued on next page)

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not include