Network, degeneracy and bow tie. Integrating paradigms and architectures to grasp the complexity of the immune system

  • PDF / 1,110,210 Bytes
  • 16 Pages / 595.276 x 793.701 pts Page_size
  • 74 Downloads / 165 Views

DOWNLOAD

REPORT


RESEARCH

Open Access

Network, degeneracy and bow tie. Integrating paradigms and architectures to grasp the complexity of the immune system Paolo Tieri1,2*, Andrea Grignolio1, Alexey Zaikin3, Michele Mishto1,4, Daniel Remondini1, Gastone C Castellani1, Claudio Franceschi1,2 * Correspondence: [email protected] 1 Interdept. Center “Luigi Galvani” for Bioinformatics, Biophysics and Biocomplexity (CIG), University of Bologna, Via F. Selmi 3, 40126 Bologna, Italy

Abstract Recently, the network paradigm, an application of graph theory to biology, has proven to be a powerful approach to gaining insights into biological complexity, and has catalyzed the advancement of systems biology. In this perspective and focusing on the immune system, we propose here a more comprehensive view to go beyond the concept of network. We start from the concept of degeneracy, one of the most prominent characteristic of biological complexity, defined as the ability of structurally different elements to perform the same function, and we show that degeneracy is highly intertwined with another recently-proposed organizational principle, i.e. ‘bow tie architecture’. The simultaneous consideration of concepts such as degeneracy, bow tie architecture and network results in a powerful new interpretative tool that takes into account the constructive role of noise (stochastic fluctuations) and is able to grasp the major characteristics of biological complexity, i.e. the capacity to turn an apparently chaotic and highly dynamic set of signals into functional information.

Background - the complexity of the immune system The vertebrate immune system (IS) is the result of a long evolutionary history and has a fundamental role in host defence against bacteria, viruses and parasites. It comprises a variety of proteins and other molecules, cell types and organs, which interact intensely and communicate in a complex and dynamic network of signals. The IS, like the nervous system, shows features of a cognitive system: it is capable of learning and memory, resulting in adaptive behaviour. Indeed, the IS creates an ‘immunological memory’ of previous information (primary response to a specific pathogen) and adapts itself for better recognition if the same pathogen recurs, thus providing an enhanced and more effective response. This adaptation process is referred to as adaptive immunity or acquired immunity, and makes vaccination a powerful clinical strategy [1]. Notwithstanding the availability of abundant data, a comprehensive theoretical framework for the functioning of the IS is still underdeveloped [2]. We will briefly illustrate three major conceptualizations that have been proposed to grasp the complexity of biological systems, and we will pay particular attention to the IS as one of the most complex systems in the human body, about which numerous data and several conceptualizations are already available. We will consider the concept © 2010 Tieri et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative