Not Just Signal Shutoff: The Protective Role of Arrestin-1 in Rod Cells

The retinal rod cell is an exquisitely sensitive single-photon detector that primarily functions in dim light (e.g., moonlight). However, rod cells must routinely survive light intensities more than a billion times greater (e.g., bright daylight). One ser

  • PDF / 321,262 Bytes
  • 16 Pages / 439.37 x 666.142 pts Page_size
  • 1 Downloads / 154 Views

DOWNLOAD

REPORT


Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1 The Visual System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 Arrestin Structure and Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Arrestin Quenches Meta II Signaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Arrestin Protects the Rod Cell from the Consequences of Bright Light . . . . . . . . . . . . . . . . . . 3.1 Bright Light Generates Toxic Levels of ATR in the Rod Cell . . . . . . . . . . . . . . . . . . . . . . 3.2 Arrestin Stimulates Uptake of ATR by Phosphorylated Opsin . . . . . . . . . . . . . . . . . . . . . . 3.3 Arrestin Imposes Asymmetric Ligand Binding Within an Opsin Dimer . . . . . . . . . . . 3.4 Sequestered ATR is Still Accessible to Retinol Dehydrogenase . . . . . . . . . . . . . . . . . . . . 3.5 Perspectives and Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Arrestin Translocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

102 102 104 105 106 106 108 109 109 110 111 112 112

Abstract The retinal rod cell is an exquisitely sensitive single-photon detector that primarily functions in dim light (e.g., moonlight). However, rod cells must routinely survive light intensities more than a billion times greater (e.g., bright daylight). One serious challenge to rod cell survival in daylight is the massive amount of all-trans-retinal that is released by Meta II, the light-activated form of the photoreceptor rhodopsin. All-trans-retinal is toxic, and its condensation products have been implicated in disease. Our recent work has developed the concept that rod arrestin (arrestin-1), which terminates Meta II signaling, has an additional role in protecting rod cells from the consequences of bright light by limiting free all-trans-retinal. In this chapter we will elaborate upon the molecular mechanisms by which arrestin-1 serves as both a single-photon response quencher as well as an instrument of rod cell survival in bright light. This discussion will take place within

M.E. Sommer (*) • K.P. Hofmann • M. Heck Institut fu¨r Medizinische Physik und Biophysik (CC2), Charite´ – Universita¨tsmedizin Berlin, Charite´platz 1, 10117 Berlin, Germany e-mail: martha.somm