Quantification of overaging hardening kinetics of aluminum alloys

  • PDF / 199,506 Bytes
  • 3 Pages / 607.68 x 788.88 pts Page_size
  • 8 Downloads / 211 Views

DOWNLOAD

REPORT


12/29/04

10:39 PM

Page 2172

Table II. Reported and Calculated Values of Lattice Parameters of Pure Ni3Al and  Phase in Superalloys CMSX-2 and SRR99 Lattice Parameter (nm)

Datum Source

Ni3Al

Reported Using Eq. [9] Using Eq. [10]

0.3567[4] 0.3568 0.3631

 (CMSX-2)

 (SRR99)

0.3585[1] 0.3578 0.3625

0.3588 0.0002[3] 0.3586 0.3633

Theoretically, the proposed calculation method can also be used in the prediction of unconstrained lattice parameters of other ordered phases if only the chemical concentration of sublattices of the phases investigated is obtained. Fig. 1—Atomic spacing in characteristic close-packed directions AB, BC , and DC in sublattices and the lattice parameter of  phase AD  ag ¿ .

REFERENCES Table I. Chemical Concentration of Sublattices in Pure Ni3Al and in  Phase of Superalloys CMSX-2[8] and SRR99[9] Chemical Concentration of Sublattices, At. Pct Alloying Element Ni Co Ti Cr Al W Ta

 (CMSX-2)

Ni3Al

 (SRR99)

Xf

Xc

Xf*

Xc*

Xf

Xc

100.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 100.00 0.00 0.00

85.00 6.00 2.00 7.00 0.00 0.00 0.00

17.00 1.50 3.00 0.00 60.50 11.50 6.50

88.97 3.41 3.31 3.41 0.80 0.10 0.00

16.90 1.00 4.80 0.20 63.10 9.20 4.80

*Xf and Xc correspond to X2il and X2i, respectively, in the equations given previously.

of the ordered phase, whereas an obvious discrepancy exists when the conventional Eq. [10] is used. Thus, as compared with Eq. [10], the derived Eq. [9] is more suitable for the calculation of lattice parameters of unconstrained L12 structured  in Ni-base superalloys. Table I gives the chemical concentration of sublattices of Ni3Al and  phase in superalloys CMSX-2[8] and SRR99,[9] respectively. Table II makes a comparison between the reported and calculated values in  lattice parameter, respectively. The magnitudes of atomic radius of the alloying elements present in the  phase are cited from Reference 10 when the related calculation is performed. The results verify the fact that the magnitude of lattice parameter of ordered  phase is closely related with the atomic site occupancy and the chemical concentration of sublattices in  phase. It is clear that Eqs. [9] and [10] reflect the existing geometric relationship between the weighted closest atomic spacing of alloying elements and the unconstrained lattice parameter of an ordered L12 structured phase and a disordered fcc structured phase, respectively. It is suggested that the derived Eq. [9] should be more suitable to the  phase than Eq. [10], which has been widely used for the disordered fcc structure, when a sufficient number of data regarding the unconstrained lattice parameters and the chemical concentrations of sublattices of the ordered phase are available. 2172—VOLUME 35A, JULY 2004

1. P. Caron and T. Khan: Mater. Sci. Eng., 1983, vol. 61, pp. 173-84. 2. U. Brückner, A. Epishin, T. Link, and K. Dressel: Mater. Sci. Eng. A, 1998, vol. 247A, pp. 23-31. 3. R. Völkl, U. Glatzel, and M. Feller-Kniepmeier: Acta Mater., 1998, vol. 46 (12), pp. 4395