Statistical methods for the analysis of adverse event data in randomised controlled trials: a scoping review and taxonom

  • PDF / 1,663,793 Bytes
  • 13 Pages / 595.276 x 790.866 pts Page_size
  • 31 Downloads / 140 Views

DOWNLOAD

REPORT


(2020) 20:288

RESEARCH ARTICLE

Open Access

Statistical methods for the analysis of adverse event data in randomised controlled trials: a scoping review and taxonomy Rachel Phillips1* , Odile Sauzet2 and Victoria Cornelius1

Abstract Background: Statistical methods for the analysis of harm outcomes in randomised controlled trials (RCTs) are rarely used, and there is a reliance on simple approaches to display information such as in frequency tables. We aimed to identify whether any statistical methods had been specifically developed to analyse prespecified secondary harm outcomes and non-specific emerging adverse events (AEs). Methods: A scoping review was undertaken to identify articles that proposed original methods or the original application of existing methods for the analysis of AEs that aimed to detect potential adverse drug reactions (ADRs) in phase II-IV parallel controlled group trials. Methods where harm outcomes were the (co)-primary outcome were excluded. Information was extracted on methodological characteristics such as: whether the method required the event to be prespecified or could be used to screen emerging events; and whether it was applied to individual events or the overall AE profile. Each statistical method was appraised and a taxonomy was developed for classification. Results: Forty-four eligible articles proposing 73 individual methods were included. A taxonomy was developed and articles were categorised as: visual summary methods (8 articles proposing 20 methods); hypothesis testing methods (11 articles proposing 16 methods); estimation methods (15 articles proposing 24 methods); or methods that provide decision-making probabilities (10 articles proposing 13 methods). Methods were further classified according to whether they required a prespecified event (9 articles proposing 12 methods), or could be applied to emerging events (35 articles proposing 61 methods); and if they were (group) sequential methods (10 articles proposing 12 methods) or methods to perform final/one analyses (34 articles proposing 61 methods). (Continued on next page)

* Correspondence: [email protected] 1 Imperial Clinical Trials Unit, Imperial College London, 1st Floor Stadium House, 68 Wood Lane, London W12 7RH, United Kingdom Full list of author information is available at the end of the article © The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, yo