Robot Behaviour Design, Description, Analysis and Modelling
"Robot Behaviour - Design, Description, Analysis and Modelling" is the successor to the first textbook published in this field: Scientific Methods in Mobile Robotics and introduces the emerging field of scientific methods in mobile robotics to a wider aud
- PDF / 8,683,123 Bytes
- 261 Pages / 439.37 x 666.142 pts Page_size
- 10 Downloads / 252 Views
Ulrich Nehmzow
Robot Behaviour Design, Description, Analysis and Modelling
Ulrich Nehmzow, Dipl. Ing., PhD, CEng, MIET School of Computing and Intelligent Systems University of Ulster Londonderry, UK
ISBN: 978-1-84800-396-5 e-ISBN: 978-1-84800-397-2 DOI 10.1007/978-1-84800-397-2 British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Library of Congress Control Number: 2008936683 © Springer-Verlag London Limited 2009 Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms of licences issued by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the publishers. The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant laws and regulations and therefore free for general use. The publisher makes no representation, express or implied, with regard to the accuracy of the information contained in this book and cannot accept any legal responsibility or liability for any errors or omissions that may be made. Printed on acid-free paper Springer Science+Business Media springer.com
For Claudia
S.D.G.
Foreword
Robots have evolved impressively since the 3-D manipulator built by C.W. Kenward (1957), the two little electromechanical turtles Elmer and Elsie [Walter, 1950, Walter, 1951], and the first mobile robots controlled by computers, Shakey [Nilsson, 1984], CART [Moravec, 1979, Moravec, 1983], and Hilare [Giralt et al., 1979]. Since then, we have seen industrial robot manipulators working in car factories, automatic guided vehicles moving heavy loads along pre-defined routes, human-remotely-operated robots neutralising bombs, and even semi-autonomous robots, like Sojourner, going to Mars and moving from one position to another commanded from Earth. Robots will go further and further in our society. However, there is still a kind of robot that has not completely taken off so far: autonomous robots. Autonomy depends upon working without human supervision for a considerable amount of time, taking independent decisions, adapting to new challenges in dynamic environments, interacting with other systems and humans, and so on. Research on autonomy is highly motivated by the expectations of having robots that can work with us and for us in everyday environments, assisting us at home or work, acting as servants and companions to help us in the execution of different tasks, so that we can have more spare time and a better quality of life. But we cannot hope to manage such complex challenges without a deeper understanding of robot behaviour, a formal language and a methodology th
Data Loading...