Temperature-mediated tribological characteristics of 40CrNiMoA steel and Inconel 718 alloy during sliding against Si 3 N

  • PDF / 16,659,798 Bytes
  • 23 Pages / 595.22 x 790.976 pts Page_size
  • 59 Downloads / 121 Views

DOWNLOAD

REPORT


ISSN 2223-7690 CN 10-1237/TH

RESEARCH ARTICLE

Temperature-mediated tribological characteristics of 40CrNiMoA steel and Inconel 718 alloy during sliding against Si3N4 counterparts   Liuyang BAI1,2, Shanhong WAN1,2,*, Gewen YI1,2,*, Yu SHAN1, Sang The PHAM3, Anh Kiet TIEU3, Yan LI4, Rendong WANG5 1

State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China

2

Center of Materials Science and Opto-Electronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

3

Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong 2522, Australia

4

State Key Laboratory of Metal Materials for Marine Equipment and Application, Anshan 114009, China

5

Ansteel Iron & Steel Research Institute, Anshan 114009, China

Received: 10 March 2020 / Revised: 30 July 2020 / Accepted: 23 September 2020

© The author(s) 2020. Abstract:  A  comparative  evaluation  of  the  friction  and  wear  behaviors  of  40CrNiMoA  steel  and  Inconel  718  alloy  sliding  against  SiN  counterparts  was  conducted  over  a  large  temperature  range  from  room  temperature  (RT)  to  800 ℃.  The  temperature‐dependent  tribological  properties  associated  with  the  resulting  chemical  mitigation  and  structural  adaptation  of  the  solid  sliding  surface  were  clarified  by  surface/interface  characterizations.  The  results  revealed  desirable  performance  in  reducing  friction  and  wear at elevated temperatures, which was associated with the resulting oxide composite filmʹs adaptive  lubricating  capability,  whereas  severe  abrasive  wear  occurred  at  room/ambient  temperatures.  The  oxidative‐abrasive  differentials  for  the  two  alloys  were  further  discussed  by  considering  the  combined  effect of temperature and stressed‐shearing conditions.    Keywords: steel  alloys;  high‐temperature  tribology;  wear  and  friction;  oxidation;  surface/interface  chemistry     

1    Introduction  High‐temperature  tribological  characteristics  of  high‐strength alloyed materials have been studied  considerably  in  aerospace,  power  generation,  material processing, and metalworking industries.  A  series  of  problems  occur  simultaneously  between  frictional contacts, such as abrasion, plastic deformation,  and  fatigue  [1].  During  high‐temperature  friction,  oxides preferentially form on the worn surface [2],  and  their  thicknesses  play  a  pivotal  role  in  tribological performance [3]. If the tribochemically 

grown  oxide  layer  behaves  effectively,  it  can  deliver  the  desired  lubricity  between  the  rubbing  contacts  at  elevated  temperatures  [4].  However,  not all in situ grown oxide layers perform favorably.  Temperature has a significant effect on tribological  varieties of alloyed materials [5, 6]. Thus, attempts  to  comprehend  the  tribological  capabilities  and  underlying  mechanism  of  alloyed  materials  in  terms  of  microstructure  transition  and  composit