The Impact of Atmospheric Correction on Brazilian Earth Tide Models

  • PDF / 795,707 Bytes
  • 13 Pages / 547.087 x 737.008 pts Page_size
  • 25 Downloads / 203 Views

DOWNLOAD

REPORT


Pure and Applied Geophysics

The Impact of Atmospheric Correction on Brazilian Earth Tide Models DANIEL ARANA,1,2 PAULO DE OLIVEIRA CAMARGO,3 EDER CASSOLA MOLINA,4 DENIZAR BLITZKOW,5,6 ANA CRISTINA OLIVEIRA CANCORO DE MATOS,6 and JEAN PAUL BOY7 Abstract—Terrestrial gravity stations have been in operation for several years throughout Brazil. Minimizing geophysical effects on gravimetric observations is a major challenge in the generation of solid Earth tide models. The objective of this work was to conduct an analysis of barometric information and the impact of four barometric correction methodologies on gravimetric data for two stations located in the state of Sa˜o Paulo: Presidente Prudente and Cananeia. The proposed approach involves three steps: (1) the processing of gravimetric data in order to obtain preliminary Earth tide models, (2) the application of four methodologies for atmospheric loading correction, and (3) the analysis of the impact on each wave constituent. The results show that the observed Earth tide models have a standard deviation (SD) of 0.001 and 0.01° for gravimetric factors and phases, respectively. The impact on the application of different methodologies for minimizing the air mass overload was less than 1.5 nm/s2 for the observation residuals. In addition, for both stations, the residuals in Earth tide constituents showed greater sensitivity to different atmospheric corrections for P1 and S2, which is related to the higher intensity of diurnal and semidiurnal solar constituents. Keywords: Gravity, gPhone, barometric admittance, atmospheric loading.

1

Programa de Po´s-Graduac¸a˜o em Cieˆncias Cartogra´ficas, Faculdade de Cieˆncia e Tecnologia, Universidade do Estado de Sa˜o Paulo/UNESP, Rua Roberto Simonsen, 305, Presidente Prudente, SP 19060-900, Brazil. E-mail: [email protected]; [email protected] 2 Departamento de Geoma´tica, Centro Polite´cnico, Universidade Federal do Parana´, Jardim das Ame´ricas, C.P. 19001, Curitiba, PR 81531-990, Brasil. 3 Departamento de Cartografia, Faculdade de Cieˆncia e Tecnologia, Universidade Estadual Paulista/UNESP, Rua Roberto Simonsen, 305, Presidente Prudente, SP 19060-900, Brazil. 4 Departamento de Geofı´sica-USP, Instituto de Astronomia, Geofı´sica e Cieˆncias Atmosfe´ricas, Rua do Mata˜o 1226, Sa˜o Paulo 05508-090, Brazil. 5 Laborato´rio de Topografia e Geode´sia, Departamento de Engenharia de Transporte, Universidade de Sa˜o Paulo, Av. Prof. Almeida Prado, no 83, Sa˜o Paulo, SP 05424-970, Brazil. 6 Centro de Estudos de Geodesia, Rua Cotoxo´, 611, Conj. 75, Sa˜o Paulo, SP 05021-000, Brazil. 7 E´cole et Observatoire Des Sciences de la Terre/Institut de Physique du Globe de Strasbourg, UMR 7516 CNRS-UdS), 5 rue Rene´ Descartes, 67084 Strasbourg, France.

1. Introduction Earth tide models can be estimated in the spectral domain by least squares adjustment from the development in harmonics of the time series of gravity data (Wenzel 1996). The semidiurnal, diurnal and longperiod wave constituents resulting from adjustment define solid Earth tide models. Howev