The Impact of Coevolution and Abstention on the Emergence of Cooperation
This paper explores the Coevolutionary Optional Prisoner’s Dilemma (COPD) game, which is a simple model to coevolve game strategy and link weights of agents playing the Optional Prisoner’s Dilemma game, which is also known as the Prisoner’s Dilemma with v
- PDF / 1,124,187 Bytes
- 18 Pages / 439.37 x 666.142 pts Page_size
- 12 Downloads / 174 Views
Abstract This paper explores the Coevolutionary Optional Prisoner’s Dilemma (COPD) game, which is a simple model to coevolve game strategy and link weights of agents playing the Optional Prisoner’s Dilemma game, which is also known as the Prisoner’s Dilemma with voluntary participation. A number of Monte Carlo simulations are performed to investigate the impacts of the COPD game on the emergence of cooperation. Results show that the coevolutionary rules enable cooperators to survive and even dominate, with the presence of abstainers in the population playing a key role in the protection of cooperators against exploitation from defectors. We observe that in adverse conditions such as when the initial population of abstainers is too scarce/abundant, or when the temptation to defect is very high, cooperation has no chance of emerging. However, when the simple coevolutionary rules are applied, cooperators flourish. Keywords Optional Prisoner’s Dilemma game · Voluntary participation · Evolutionary game theory
1 Introduction Evolutionary game theory in spatial environments has attracted much interest from researchers who seek to understand cooperative behaviour among rational individuals in complex environments. Many models have considered the scenarios where participants interactions are constrained by particular graph topologies, such as lattices [14, 17], small-world graphs [6, 8], scale-free graphs [19, 21] and, bipartite graphs [10]. It has been shown that the spatial organisation of strategies on these topologies affects the evolution of cooperation [3]. The Prisoner’s Dilemma (PD) game remains one of the most studied games in evolutionary game theory as it provides a simple and powerful framework to illustrate M. Cardinot (B) · C. O’Riordan · J. Griffith Department of Information Technology, National University of Ireland, Galway, Ireland e-mail: [email protected] © Springer Nature Switzerland AG 2019 J. J. Merelo et al. (eds.), Computational Intelligence, Studies in Computational Intelligence 792, https://doi.org/10.1007/978-3-319-99283-9_6
105
106
M. Cardinot et al.
the conflicts inherent in the formation of cooperation. In addition, some extensions of the PD game, such as the Optional Prisoner’s Dilemma (OPD) game, have been studied in an effort to investigate how levels of cooperation can be increased. In the OPD game, participants are afforded a third option — that of abstaining and not playing and thus obtaining the loner’s payoff (L). Incorporating this concept of abstention leads to a three-strategy game where participants can choose to cooperate, defect or abstain from a game interaction. The vast majority of the spatial models in previous work have used static and unweighted networks. However, in many social scenarios that we wish to model, such as social networks and real biological networks, the number of individuals, their connections and environment are often dynamic. Thus, recent studies have also investigated the effects of evolutionary games played on dynamically weighted networks [
Data Loading...