Towards Defined DNA and RNA Delivery Vehicles Using Nucleic Acid Nanotechnology
Both DNA and RNA nanostructures show exceptional programmability, modularity, and self-assembly ability. Using DNA or RNA molecules it is possible to assemble monodisperse particles that are homogeneous in size and shape and with identical positioning of
- PDF / 541,260 Bytes
- 21 Pages / 439.37 x 666.142 pts Page_size
- 38 Downloads / 185 Views
Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Creating Nanostructures from DNA and RNA Building Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1 DNA Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 RNA Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Expanding the Functionality of DNA and RNA Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Delivery Vehicles of DNA and RNA Nanostructures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1 DNA Structures in Drug Delivery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2 RNA Structures in Drug Delivery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Future Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
326 327 328 331 334 335 336 338 339 341 341
A.H. Okholm (*) • J. Kjems Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark Department of Molecular Biology, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark Centre for DNA Nanotechnology, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark e-mail: [email protected] D. Schaffert Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark Department of Molecular Biology, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark Centre for DNA Nanotechnology, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark BASF, Carl-Bosch-Str. 38, Ludwigshafen 67056, Germany V.A. Erdmann et al. (eds.), Chemical Biology of Nucleic Acids, RNA Technologies, DOI 10.1007/978-3-642-54452-1_18, © Springer-Verlag Berlin Heidelberg 2014
325
326
A.H. Okholm et al.
Abstract Both DNA and RNA nanostructures show exceptional programmability, modularity, and self-assembly ability. Using DNA or RNA molecules it is possible to assemble monodisperse particles that are homogeneous in size and shape and with identical positioning of surface modifications. For therapeutic applications such nanoparticles are of particular interest as they can be tailored to target cells and reduce unwanted side effects due to pa
Data Loading...