Transseries and Real Differential Algebra

Transseries are formal objects constructed from an infinitely large variable x and the reals using infinite summation, exponentiation and logarithm. They are suitable for modeling "strongly monotonic" or "tame" asymptotic solutions to differential equatio

  • PDF / 4,947,394 Bytes
  • 265 Pages / 441.406 x 651.659 pts Page_size
  • 42 Downloads / 186 Views

DOWNLOAD

REPORT


Lecture Notes in Mathematics

1

Joris van der Hoeven

Transseries and Real Differential Algebra

1888

฀1 23

Lecture Notes in Mathematics Editors: J.-M. Morel, Cachan F. Takens, Groningen B. Teissier, Paris

1888

J. van der Hoeven

Transseries and Real Differential Algebra

ABC

Author Joris van der Hoeven Département de Mathématiques, CNRS Université Paris-Sud Bâtiment 425 91405 Orsay CX France e-mail: [email protected]

Library of Congress Control Number: 2006930997 Mathematics Subject Classification (2000): 34E13, 03C65, 68w30, 34M35, 13H05 ISSN print edition: 0075-8434 ISSN electronic edition: 1617-9692 ISBN-10 3-540-35590-1 Springer Berlin Heidelberg New York ISBN-13 978-3-540-35590-8 Springer Berlin Heidelberg New York DOI 10.1007/3-540-35590-1

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable for prosecution under the German Copyright Law. Springer is a part of Springer Science+Business Media springer.com c Springer-Verlag Berlin Heidelberg 2006  The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Typesetting by the author and SPi using a Springer LATEX package Cover design: WMXDesign GmbH, Heidelberg Printed on acid-free paper

SPIN: 11771975

VA41/3100/SPi

543210

Table of Contents

Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

XI

Introduction . . . . . . . . . The field with no escape Historical perspectives . Outline of the contents Notations . . . . . . . . .

. . . . . . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

1 1 3 7 10

1

Orderings . . . . . . . . . . 1.1 Quasi-orderings . . . . 1.2 Ordinal numbers . . . 1.3 Well-quasi-orderings . 1.4 Kruskal’s theorem . . 1.5 Ordered structures . . 1.6 Asymptotic relations 1.7 Hahn spaces . . . . . . 1.8 Groups and rings with

. ... .. .. .. .. . . ... .. .. .. .. . . ... .. .. .. .. . . ... .. .. .. .. . . ... .. .. .. .. . . ... .. .. .. .. . . ... .. .. .. .. . . ... .. .. .. .. . generalized powers

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. .