Tripeptidyl peptidase I promotes human endometrial epithelial cell adhesive capacity implying a role in receptivity

  • PDF / 2,035,205 Bytes
  • 10 Pages / 595.276 x 790.866 pts Page_size
  • 25 Downloads / 182 Views

DOWNLOAD

REPORT


(2020) 18:124

RESEARCH

Open Access

Tripeptidyl peptidase I promotes human endometrial epithelial cell adhesive capacity implying a role in receptivity Leilani L. Santos1,2† , Cheuk Kwan Ling1,2†

and Evdokia Dimitriadis1,2*

Abstract The endometrium undergoes cyclic remodelling throughout the menstrual cycle in preparation for embryo implantation which occurs in a short window during the mid-secretory phase. It is during this short ‘receptive window’ that the endometrial luminal epithelium acquires adhesive capacity permitting blastocysts firm adhesion to the endometrium to establish pregnancy. Dysregulation in any of these steps can compromise embryo implantation resulting in implantation failure and infertility. Many factors contribute to these processes including TGF-β, LIF, IL-11 and proteases. Tripeptidyl peptidase 1 (TPP1) is a is a lysosomal serine-type protease however the contribution of the TPP1 to receptivity is unknown. We aimed to investigate the role of TPP1 in receptivity in humans. In the current study, TPP1 was expressed in both epithelial and stromal compartments of the endometrium across the menstrual cycle. Expression was confined to the cytoplasm of luminal and glandular epithelial cells and stromal cells. Staining of mid-secretory endometrial tissues of women with normal fertility and primary unexplained infertility showed reduced immunostaining intensity of TPP1 in luminal epithelial cells of infertile tissues compared to fertile tissues. By contrast, TPP1 levels in glandular epithelial and stromal cells were comparable in both groups in the mid-secretory phase. Inhibition of TPP1 using siRNA compromised HTR8/SVneo (trophoblast cell line) spheroid adhesion on siRNA-transfected Ishikawa cells (endometrial epithelial cell line) in vitro. This impairment was associated with decreased sirtuin 1 (SIRT1), BCL2 and p53 mRNA and unaltered, CD44, CDH1, CDH2, ITGB3, VEGF A, OSTEOPONTIN, MDM2, CASP4, MCL1, MMP2, ARF6, SGK1, HOXA-10, LIF, and LIF receptor gene expression between treatment groups. siRNA knockdown of TPP1 in primary human endometrial stromal cells did not affect decidualization nor the expression of decidualization markers prolactin (PRL) and insulin-like growth factor-binding protein 1 (IGFBP1). Taken together, our data strongly suggests a role for TPP1 in endometrial receptivity via its effects on epithelial cell adhesion and suggests reduced levels associated with unexplained infertility may contribute to implantation failure. Keywords: Endometrial receptivity, TPP1, SIRT1, BCL2, p53, Embryo implantation, Adhesion, Decidualization

* Correspondence: [email protected] † Leilani L. Santos and Cheuk Kwan Ling contributed equally to this work. 1 Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC 3010, Australia 2 Gynaecology Research Centre, The Royal Women’s Hospital, Level 7, 20 Flemington Road, Parkville, VIC 3052, Australia © The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International Lice