Adaptive responses to salinity stress across multiple life stages in anuran amphibians
- PDF / 1,015,958 Bytes
- 16 Pages / 595.276 x 790.866 pts Page_size
- 94 Downloads / 163 Views
RESEARCH
Open Access
Adaptive responses to salinity stress across multiple life stages in anuran amphibians Molly A. Albecker*
and Michael W. McCoy
Abstract Background: In many regions, freshwater wetlands are increasing in salinity at rates exceeding historic levels. Some freshwater organisms, like amphibians, may be able to adapt and persist in salt-contaminated wetlands by developing salt tolerance. Yet adaptive responses may be more challenging for organisms with complex life histories, because the same environmental stressor can require responses across different ontogenetic stages. Here we investigated responses to salinity in anuran amphibians: a common, freshwater taxon with a complex life cycle. We conducted a meta-analysis to define how the lethality of saltwater exposure changes across multiple life stages, surveyed wetlands in a coastal region experiencing progressive salinization for the presence of anurans, and used common garden experiments to investigate whether chronic salt exposure alters responses in three sequential life stages (reproductive, egg, and tadpole life stages) in Hyla cinerea, a species repeatedly observed in saline wetlands. Results: Meta-analysis revealed differential vulnerability to salt stress across life stages with the egg stage as the most salt-sensitive. Field surveys revealed that 25% of the species known to occur in the focal region were detected in salt-intruded habitats. Remarkably, Hyla cinerea was found in large abundances in multiple wetlands with salinity concentrations 450% higher than the tadpole-stage LC50. Common garden experiments showed that coastal (chronically salt exposed) populations of H. cinerea lay more eggs, have higher hatching success, and greater tadpole survival in higher salinities compared to inland (salt naïve) populations. Conclusions: Collectively, our data suggest that some species of anuran amphibians have divergent and adaptive responses to salt exposure across populations and across different life stages. We propose that anuran amphibians may be a novel and amenable natural model system for empirical explorations of adaptive responses to environmental change. Keywords: Secondary salinization, Anuran amphibian, Sea level rise, Saltwater tolerance, Climate change, Complex life history
Background Accumulating greenhouse gas concentrations are increasing the energy retained in the atmosphere, which is in turn causing global mean sea levels to rise through intensified ice sheet and glacier melting and thermal expansion of ocean water [1–4]. Sea levels have already risen 17-21 cm over the past 110 years, and current models forecast that sea levels could rise an additional 40–63 cm over the next century with additions expected if ice sheets on Greenland and West Antarctica collapse [2, 4–8]. Ancillary impacts of climate change on coastal wetlands include * Correspondence: [email protected] Department of Biology, Howell Science Complex, East Carolina University, Greenville, NC, USA
alterations in the frequency and intensity of stor
Data Loading...