Air Pollution Modeling and its Application XXV

Current developments in air pollution modelling are explored as a series of contributions from researchers at the forefront of their field. This newest contribution on air pollution modelling and its application is focused on local, urban, regional and in

  • PDF / 23,648,110 Bytes
  • 612 Pages / 453.543 x 683.15 pts Page_size
  • 67 Downloads / 205 Views

DOWNLOAD

REPORT


Clemens Mensink George Kallos Editors

Air Pollution Modeling and its Application XXV

Springer Proceedings in Complexity Series editors Henry Abarbanel, San Diego, USA Dan Braha, Dartmouth, USA Péter Érdi, Kalamazoo, USA Karl Friston, London, UK Hermann Haken, Stuttgart, Germany Viktor Jirsa, Marseille, France Janusz Kacprzyk, Warsaw, Poland Kunihiko Kaneko, Tokyo, Japan Scott Kelso, Boca Raton, USA Markus Kirkilionis, Coventry, UK Jürgen Kurths, Potsdam, Germany Andrzej Nowak, Warsaw, Poland Hassan Qudrat-Ullah, Toronto, Canada Linda Reichl, Austin, USA Peter Schuster, Vienna, Austria Frank Schweitzer, Zürich, Switzerland Didier Sornette, Zürich, Switzerland Stefan Thurner, Vienna, Austria

Springer Complexity Springer Complexity is an interdisciplinary program publishing the best research and academic-level teaching on both fundamental and applied aspects of complex systems—cutting across all traditional disciplines of the natural and life sciences, engineering, economics, medicine, neuroscience, social, and computer science. Complex Systems are systems that comprise many interacting parts with the ability to generate a new quality of macroscopic collective behavior the manifestations of which are the spontaneous formation of distinctive temporal, spatial, or functional structures. Models of such systems can be successfully mapped onto quite diverse “real-life” situations like the climate, the coherent emission of light from lasers, chemical reaction–diffusion systems, biological cellular networks, the dynamics of stock markets and of the Internet, earthquake statistics and prediction, freeway traffic, the human brain, or the formation of opinions in social systems, to name just some of the popular applications. Although their scope and methodologies overlap somewhat, one can distinguish the following main concepts and tools: self-organization, nonlinear dynamics, synergetics, turbulence, dynamical systems, catastrophes, instabilities, stochastic processes, chaos, graphs and networks, cellular automata, adaptive systems, genetic algorithms, and computational intelligence. The three major book publication platforms of the Springer Complexity program are the monograph series “Understanding Complex Systems” focusing on the various applications of complexity, the “Springer Series in Synergetics”, which is devoted to the quantitative theoretical and methodological foundations, and the “SpringerBriefs in Complexity” which are concise and topical working reports, case-studies, surveys, essays, and lecture notes of relevance to the field. In addition to the books in these two core series, the program also incorporates individual titles ranging from textbooks to major reference works.

More information about this series at http://www.springer.com/series/11637

Clemens Mensink ⋅ George Kallos Editors

Air Pollution Modeling and its Application XXV

123

Editors Clemens Mensink VITO NV Mol Belgium

George Kallos School of Physics, Division of Environment and Meteorology University of Athens Athens Greece

ISSN 2213-8684