An AMA1/MSP1 19 Adjuvanted Malaria Transplastomic Plant-Based Vaccine Induces Immune Responses in Test Animals

  • PDF / 1,032,788 Bytes
  • 12 Pages / 595.276 x 790.866 pts Page_size
  • 87 Downloads / 153 Views

DOWNLOAD

REPORT


ORIGINAL PAPER

An AMA1/MSP119 Adjuvanted Malaria Transplastomic Plant‑Based Vaccine Induces Immune Responses in Test Animals Evelia M. Milán‑Noris1,2 · Elizabeth Monreal‑Escalante3 · Sergio Rosales‑Mendoza3 · Ruth E. Soria‑Guerra4 · Osman Radwan5,6 · John A. Juvik1,7 · Schuyler S. Korban1,5  Accepted: 26 August 2020 © Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract Malaria is a tropical human disease, caused by protozoan parasites, wherein a significant number of the world’s population is at risk. Annually, more than 219 million new cases are reported. Although there are prevention treatments, there are no highly and widely effective licensed anti-malarial vaccines available for use. Opportunities for utilization of plant-based vaccines as novel platforms for developing safe, reliable, and affordable treatments offer promise for developing such a vaccine against malaria. In this study, a Malchloroplast candidate vaccine was designed, composed of segments of AMA1 and MSP1 proteins, two epitopes of Plasmodium falciparum, along with a GK1 peptide from Taenia solium as adjuvant, and this was expressed in tobacco chloroplasts. Transplastomic tobacco lines were generated using biolistic transformation, and these were confirmed to carry the synthetic gene construct. Expression of the synthetic GK1 peptide was confirmed using RT-PCR and Western blots. Furthermore, the GK1 peptide was detected by HPLC at levels of up to 6 µg g−1 dry weight of tobacco leaf tissue. The plant-derived Malchloroplast candidate vaccine was subsequently tested in BALB/c female mice following subcutaneous administration, and was found to elicit specific humoral responses. Furthermore, components of this candidate vaccine were recognized by antibodies in Plasmodium falciparum malaria patients and were immunogenic in test mice. Thus, this study provided a ‘proof of concept’ for a promising plant-based candidate subunit vaccine against malaria. Keywords  Plastid transformation · Plasmodium falciparum · Transplastomics · Vaccine adjuvant · Polycistronic · Humoral response · Molecular farming Electronic supplementary material  The online version of this article (https​://doi.org/10.1007/s1203​3-020-00271​-x) contains supplementary material, which is available to authorized users. * Sergio Rosales‑Mendoza [email protected] * Schuyler S. Korban [email protected] 1



Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

2



Present Address: Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, Mexico

3

Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, 78210 San Luis Potosi, SLP, Mexico

4

Laboratorio de Ingeniería de Biorreactores, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, 78210 San Luis Potosi, SLP, Mexico





Introduction Malaria is a potentially deadly tropical disease, with an es