Aqueous Two-Phase Systems: An Alternative Process for Industrial Dye Recovery

The release of large volume of dyes through industrial aqueous effluents has become a growing concern, as effluents containing dyes are harmful to the environment and to living things. In this scenario, different methods (physical, chemical and biological

  • PDF / 607,915 Bytes
  • 21 Pages / 439.37 x 666.142 pts Page_size
  • 91 Downloads / 187 Views

DOWNLOAD

REPORT


Aqueous Two-Phase Systems: An Alternative Process for Industrial Dye Recovery Luan Victor T. D. Alencar, Lais M. S. Passos, Renato Nery Soriano, Ram Naresh Bharagava, Luiz Fernando Romanholo Ferreira, and Ranyere Lucena de Souza

Abstract The release of large volume of dyes through industrial aqueous effluents has become a growing concern, as effluents containing dyes are harmful to the environment and to living things. In this scenario, different methods (physical, chemical and biological) were developed for dye removal from wastewater. However, environmental and economic constraints can hamper industries’ access to these technologies. Therefore, this chapter explores the use of aqueous two-phase systems (ATPS), considered an economically viable, efficient and environmentally low-impact technology for the recovery of dyes. Inherent aspects, such as classification of dyes, composition and behaviour of phases and influence on the recovery of dyes in ATPS, are examined. Keywords Textile effluent · Toxicity · Dye recovery · Aqueous two-phase systems (ATPS) · Low-impact technology

L. V. T. D. Alencar · L. M. S. Passos Tiradentes University, Aracaju, Sergipe, Brazil R. N. Soriano Division of Molecular Biology, Innsbruck Medical University, Innsbruck, Austria R. N. Bharagava Department of Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India L. F. R. Ferreira · R. L. de Souza (*) Tiradentes University, Aracaju, Sergipe, Brazil Institute of Technology and Research. Av. Murilo Dantas, Aracaju, Sergipe, Brazil © Springer Nature Singapore Pte Ltd. 2021 P. K. Gupta, R. N. Bharagava (eds.), Fate and Transport of Subsurface Pollutants, Microorganisms for Sustainability 24, https://doi.org/10.1007/978-981-15-6564-9_3

35

36

3.1

L. V. T. D. Alencar et al.

Introduction

Dyes are some of the most significant aquatic pollutants discharged by industry. It is estimated that more than 7  105 tonnes of wastewater containing dyes are generated by various industries worldwide each year (Hasan and Jhung 2015; Rajoriya et al. 2017; Zamora-Garcia et al. 2018). The effects of the inadequate disposal of these effluents can have significant impacts on the environment by altering the physical, chemical and biological properties of the aquatic environment (Dellamatrice et al. 2016; Hossain et al. 2018; Roy et al. 2018). One of the main sources of dye-contaminated wastewater is the textile industry, which involves the consumption of various types of dyes (Hussain and Wahab 2018; Rahman et al. 2018; Rovira and Domingo 2018). In view of increasingly stringent laws and regulations, associated industries are obliged to find effective treatments for dye-borne industrial effluents before releasing them into the environment (Hessel et al. 2007; Liu et al. 2014; Vajnhandl and Valh 2014). Several treatment techniques (physical, chemical and biological) are proposed to remove residual water dyes (Patra et al. 2018; Rahman et al. 2018). However, most treatment methods have limitations, among which generation of hazardous waste, slow