Bacillus subtilis : a universal cell factory for industry, agriculture, biomaterials and medicine
- PDF / 1,664,097 Bytes
- 12 Pages / 595.276 x 790.866 pts Page_size
- 83 Downloads / 175 Views
(2020) 19:173 Su et al. Microb Cell Fact https://doi.org/10.1186/s12934-020-01436-8
Open Access
REVIEW
Bacillus subtilis: a universal cell factory for industry, agriculture, biomaterials and medicine Yuan Su1,2, Chuan Liu2,3, Huan Fang2,3 and Dawei Zhang2,3,4*
Abstract Due to its clear inherited backgrounds as well as simple and diverse genetic manipulation systems, Bacillus subtilis is the key Gram-positive model bacterium for studies on physiology and metabolism. Furthermore, due to its highly efficient protein secretion system and adaptable metabolism, it has been widely used as a cell factory for microbial production of chemicals, enzymes, and antimicrobial materials for industry, agriculture, and medicine. In this minireview, we first summarize the basic genetic manipulation tools and expression systems for this bacterium, including traditional methods and novel engineering systems. Secondly, we briefly introduce its applications in the production of chemicals and enzymes, and summarize its advantages, mainly focusing on some noteworthy products and recent progress in the engineering of B. subtilis. Finally, this review also covers applications such as microbial additives and antimicrobials, as well as biofilm systems and spore formation. We hope to provide an overview for novice researchers in this area, offering them a better understanding of B. subtilis and its applications. Keywords: Bacillus subtilis, Genetic manipulation, Protein expression, Biochemicals, Enzymes, Antimicrobials, Biofilms Introduction Bacillus subtilis is an aerobic, Gram-positive soil bacterium, which has been widely used for the production of heterologous proteins [1]. It secretes numerous enzymes to degrade a variety of substrates, enabling the bacterium to survive in a continuously changing environment. This species and some of its close relatives have excellent protein secretion ability, making them important hosts for the production of medicinal proteins and industrial enzymes. For these reasons, it has been widely used to produce heterologous proteins. Moreover, it has excellent physiological characteristics and highly adaptable metabolism, which makes it easy to cultivate on cheap substrates. Accordingly, B. subtilis grows fast and the
*Correspondence: [email protected] 2 Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China Full list of author information is available at the end of the article
fermentation cycle is shorter, usually, around 48 h, while the fermentation cycle of Saccharomyces cerevisiae is around 180 h [2, 3]. Furthermore, excellent expression systems with good genetic stability are available for this organism, and it has no strong codon preference. Different from Escherichia coli, B. subtilis has a single cell membrane, which facilitates protein secretion, simplifies downstream processing, and reduces the process costs. Finally, this species is generally recognized as safe (GRAS) [4, 5]. Over the decades of research, many different tools for genetic modifica
Data Loading...