Concerted Evolution of Multigene Families and Homoeologous Recombination

The dynamism of genomes is one of the most thoroughly documented paradigms in the genomic era, envisaged by the cytogenetic school during middle decades of the twentieth century. Such dynamism refers not just to the evolutionary changes that take place ac

  • PDF / 2,800,522 Bytes
  • 23 Pages / 595.276 x 790.866 pts Page_size
  • 34 Downloads / 160 Views

DOWNLOAD

REPORT


12

Gonzalo Nieto Feliner and Josep A. Rossello´

Contents

12.1

12.1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

12.2 12.2.1 12.2.2 12.2.3 12.2.4 12.2.5

Concerted Evolution of Multigene Families . . . . . . . . . . Discovery of the Phenomenon . . . . . . . . . . . . . . . . . . . . . . . . . . . Repetitive DNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Molecular Mechanisms for Concerted Evolution . . . . . . . Tempo and Degree of Concerted Evolution . . . . . . . . . . . . . Alternative Mechanisms for Homogeneous Gene or Protein Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Biological Implications of Concerted Evolution . . . . . . . . Concerted Evolution and Phylogenetic Inference . . . . . . .

12.2.6 12.2.7 12.3

172 172 172 175 176 177 178 180

12.3.3

Homoeologous Recombination in Hybridized Genomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Homologous Recombination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Homoeologous Recombination and Evolution of Genomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Recombination and Phylogenetic Inference . . . . . . . . . . . . .

12.4

Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

12.3.1 12.3.2

181 181 185 186

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

G. Nieto Feliner (*) Real Jardı´n Bota´nico, (CSIC), Plaza de Murillo 2, Madrid 28014, Spain e-mail: [email protected] J.F. Wendel et al. (eds.), Plant Genome Diversity Volume 1, DOI 10.1007/978-3-7091-1130-7_12, # Springer-Verlag Wien 2012

Introduction

The dynamism of genomes is one of the most thoroughly documented paradigms in the genomic era, envisaged by the cytogenetic school during middle decades of the twentieth century. Such dynamism refers not just to the evolutionary changes that take place across deep time but also to the myriad changes at different levels (from SNPs to large structural rearrangements) that shape and adjust genomes over a smaller time scale. This chapter reviews two of the many forces that provide genome dynamism in plants. These two forces, concerted evolution of multigene families and homoeologous recombination of hybridized genomes, in principle contribute to shape the plant genomes through opposite effects but, in fact, both represent some of the most important manifestations of non-independent evolution of DNA sequences. Multigene families are sets of genes descended by duplication and variation from some ancestral gene. They may be clustered together on the same chromosome or dispersed on different chromosomes. Examples of multigene families in plants include those that encode the hemoglobins, immunoglobulins, actins, tubulins, keratins, heat shock proteins, cuticle p