Differentiable Periodic Maps Second Edition

  • PDF / 7,080,799 Bytes
  • 186 Pages / 461 x 684 pts Page_size
  • 5 Downloads / 253 Views

DOWNLOAD

REPORT


738 R E. Conner

Differentiable Periodic Maps Second Edition

Springer-Verlag Berlin Heidelberg New York 1979

Author P. E. Conner Mathematics Department Louisiana State University Baton Rouge, Louisiana 70803 U.S.A.

AMS Subject Classifications (1970): 57 S 20, 55 N 22, 57 R 75

ISBN 3-540-09535-7 Springer-Verlag Berlin Heidelberg NewYork ISBN 0-387-09535-7 Springer-Verlag NewYork Heidelberg Berlin First edition published as P. E. Conner/E. E. Floyd, Differentiable Periodic Maps (Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 33) Berlin-G6ttingen-Heidelberg: Springer 1964. ISBN 3-540-03125-1 Springer-Verlag Berlin Heidelberg New York Library of Congress Cataloging in Publication Data Conner, Pierre E Differentiable periodic maps. (Lecture notes in mathematics; 738) Bibliography: p. Includes index. 1. Topological transfomation groups. 2. Cobordism theory. 3. Differentiable mappings. I. Title. II. Series: Lecture notes in mathematics (Berlin); 738. QA3.L28 no. 738 [QA613.7] 510'.8s [514'.7] 79-19135 ISBN 0-387-09535-7 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks. Under § 54 of the German Copyright Law where copies are made for other than private use, a fee is payable to the publisher, the amount of the fee to be determined by agreement with the publisher © by Springer-Verlag Berlin Heidelberg 1979 Printed in Germany Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr. 2141/3140-543210

CONTENTS

Introduction

Chapter

.......................................................

I,

Bordism

Groups

I

Differentiable

2

The

3

Straightening

4

The

oriented

5

The

Eilenberg-Steenrod

6

Consequences

7

The

8

Unoriented

9

Differentiable

Thom

manifolds

bordism

groups

angles

of

Differential

11

Thom

12

Homotopy

13

Duality

14

Triviality

15

Steenrod

16

A

17

Algebraic

18.

Generalized

19.

The

and

interpretation

of

cobordism mod

..................................

.................................. classes

...............

C

Wu

existence

Rochlin's of

an

maps

group

20.

Preliminaries Fixed

point

free

involutions

22.

Fixed

point

sets

of

23.

Normal

24.

The

25.

Unrestricted

26.

Stabilizing

27.

The

Boardman

28.

The

mod

homomorphism bordism

..........................

..................................

Involutions

21.

tangential

theorem

...................................

.......................................

MSO~-base

Differentiable

and

......................

......................................

relations

on

groups

...............................................

of

of

bordism

..........................................

invariants

2

11

characteristic

representability

Smith

..................................

....................................................

and

II,

10

............