Differentiable Periodic Maps Second Edition
- PDF / 7,080,799 Bytes
- 186 Pages / 461 x 684 pts Page_size
- 5 Downloads / 305 Views
		    738 R E. Conner
 
 Differentiable Periodic Maps Second Edition
 
 Springer-Verlag Berlin Heidelberg New York 1979
 
 Author P. E. Conner Mathematics Department Louisiana State University Baton Rouge, Louisiana 70803 U.S.A.
 
 AMS Subject Classifications (1970): 57 S 20, 55 N 22, 57 R 75
 
 ISBN 3-540-09535-7 Springer-Verlag Berlin Heidelberg NewYork ISBN 0-387-09535-7 Springer-Verlag NewYork Heidelberg Berlin First edition published as P. E. Conner/E. E. Floyd, Differentiable Periodic Maps (Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 33) Berlin-G6ttingen-Heidelberg: Springer 1964. ISBN 3-540-03125-1 Springer-Verlag Berlin Heidelberg New York Library of Congress Cataloging in Publication Data Conner, Pierre E Differentiable periodic maps. (Lecture notes in mathematics; 738) Bibliography: p. Includes index. 1. Topological transfomation groups. 2. Cobordism theory. 3. Differentiable mappings. I. Title. II. Series: Lecture notes in mathematics (Berlin); 738. QA3.L28 no. 738 [QA613.7] 510'.8s [514'.7] 79-19135 ISBN 0-387-09535-7 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks. Under § 54 of the German Copyright Law where copies are made for other than private use, a fee is payable to the publisher, the amount of the fee to be determined by agreement with the publisher © by Springer-Verlag Berlin Heidelberg 1979 Printed in Germany Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr. 2141/3140-543210
 
 CONTENTS
 
 Introduction
 
 Chapter
 
 .......................................................
 
 I,
 
 Bordism
 
 Groups
 
 I
 
 Differentiable
 
 2
 
 The
 
 3
 
 Straightening
 
 4
 
 The
 
 oriented
 
 5
 
 The
 
 Eilenberg-Steenrod
 
 6
 
 Consequences
 
 7
 
 The
 
 8
 
 Unoriented
 
 9
 
 Differentiable
 
 Thom
 
 manifolds
 
 bordism
 
 groups
 
 angles
 
 of
 
 Differential
 
 11
 
 Thom
 
 12
 
 Homotopy
 
 13
 
 Duality
 
 14
 
 Triviality
 
 15
 
 Steenrod
 
 16
 
 A
 
 17
 
 Algebraic
 
 18.
 
 Generalized
 
 19.
 
 The
 
 and
 
 interpretation
 
 of
 
 cobordism mod
 
 ..................................
 
 .................................. classes
 
 ...............
 
 C
 
 Wu
 
 existence
 
 Rochlin's of
 
 an
 
 maps
 
 group
 
 20.
 
 Preliminaries Fixed
 
 point
 
 free
 
 involutions
 
 22.
 
 Fixed
 
 point
 
 sets
 
 of
 
 23.
 
 Normal
 
 24.
 
 The
 
 25.
 
 Unrestricted
 
 26.
 
 Stabilizing
 
 27.
 
 The
 
 Boardman
 
 28.
 
 The
 
 mod
 
 homomorphism bordism
 
 ..........................
 
 ..................................
 
 Involutions
 
 21.
 
 tangential
 
 theorem
 
 ...................................
 
 .......................................
 
 MSO~-base
 
 Differentiable
 
 and
 
 ......................
 
 ......................................
 
 relations
 
 on
 
 groups
 
 ...............................................
 
 of
 
 of
 
 bordism
 
 ..........................................
 
 invariants
 
 2
 
 11
 
 characteristic
 
 representability
 
 Smith
 
 ..................................
 
 ....................................................
 
 and
 
 II,
 
 10
 
 ............		
Data Loading...
 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	