Differentiable Periodic Maps Second Edition
- PDF / 7,080,799 Bytes
- 186 Pages / 461 x 684 pts Page_size
- 5 Downloads / 253 Views
738 R E. Conner
Differentiable Periodic Maps Second Edition
Springer-Verlag Berlin Heidelberg New York 1979
Author P. E. Conner Mathematics Department Louisiana State University Baton Rouge, Louisiana 70803 U.S.A.
AMS Subject Classifications (1970): 57 S 20, 55 N 22, 57 R 75
ISBN 3-540-09535-7 Springer-Verlag Berlin Heidelberg NewYork ISBN 0-387-09535-7 Springer-Verlag NewYork Heidelberg Berlin First edition published as P. E. Conner/E. E. Floyd, Differentiable Periodic Maps (Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 33) Berlin-G6ttingen-Heidelberg: Springer 1964. ISBN 3-540-03125-1 Springer-Verlag Berlin Heidelberg New York Library of Congress Cataloging in Publication Data Conner, Pierre E Differentiable periodic maps. (Lecture notes in mathematics; 738) Bibliography: p. Includes index. 1. Topological transfomation groups. 2. Cobordism theory. 3. Differentiable mappings. I. Title. II. Series: Lecture notes in mathematics (Berlin); 738. QA3.L28 no. 738 [QA613.7] 510'.8s [514'.7] 79-19135 ISBN 0-387-09535-7 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks. Under § 54 of the German Copyright Law where copies are made for other than private use, a fee is payable to the publisher, the amount of the fee to be determined by agreement with the publisher © by Springer-Verlag Berlin Heidelberg 1979 Printed in Germany Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr. 2141/3140-543210
CONTENTS
Introduction
Chapter
.......................................................
I,
Bordism
Groups
I
Differentiable
2
The
3
Straightening
4
The
oriented
5
The
Eilenberg-Steenrod
6
Consequences
7
The
8
Unoriented
9
Differentiable
Thom
manifolds
bordism
groups
angles
of
Differential
11
Thom
12
Homotopy
13
Duality
14
Triviality
15
Steenrod
16
A
17
Algebraic
18.
Generalized
19.
The
and
interpretation
of
cobordism mod
..................................
.................................. classes
...............
C
Wu
existence
Rochlin's of
an
maps
group
20.
Preliminaries Fixed
point
free
involutions
22.
Fixed
point
sets
of
23.
Normal
24.
The
25.
Unrestricted
26.
Stabilizing
27.
The
Boardman
28.
The
mod
homomorphism bordism
..........................
..................................
Involutions
21.
tangential
theorem
...................................
.......................................
MSO~-base
Differentiable
and
......................
......................................
relations
on
groups
...............................................
of
of
bordism
..........................................
invariants
2
11
characteristic
representability
Smith
..................................
....................................................
and
II,
10
............
Data Loading...