DOE launches the Critical Materials Institute, a new Energy Innovation Hub
- PDF / 268,234 Bytes
- 2 Pages / 585 x 783 pts Page_size
- 70 Downloads / 184 Views
unches the Critical Materials Institute, a new Energy Innovation Hub http://energy.gov/hubs
T
he growth of the clean energy industry in the United States (US) has stimulated concern about the availability of critical materials for energy. These materials include several rare-earth elements and are key components in many clean energy technologies such as wind turbines, electric vehicles, energy-efficient lighting, and solar panels. While the US is estimated to have nearly 12% of the world’s rare-earth reserves, China has dominated global rare-earth production and supply for more than two decades, peaking at nearly 98% of global supply in 2010 and providing over 85% in 2012. In addition to the rare-earth elements, indium and tellurium (used in thin-film solar cells) and lithium (used in batteries) are also critical materials for clean energy technologies. The health of the clean energy economy in the US hinges both on diversifying supply for these important materials (which will include developing a domestic supply chain) and on finding innovative ways to reduce the need for them. The importance of finding new solutions to address shortages in critical materials has been widely accepted in the materials community and the US government since 2010 when China had temporarily cut off rare-earth supplies to Japan. Since then, China has also imposed restrictions on the amount of rare earths it exports, and Congressional lawmakers have been grappling with the best way to address domestic critical materials shortages. Although several rare-earth and critical materials bills have been introduced in the last two Congresses, none have gained the necessary support to become law. The US Administration has also recognized the dangers of critical materials shortages and has instituted a number
of initiatives to improve domestic materials capabilities. In 2011, President Obama launched the Materials Genome Initiative, a multi-agency effort to speed the discovery of new materials and decrease the cost of their deployment to the market. Further efforts have been made through the Department of Energy (DOE), which has supported research on a range of advanced materials and clean energy technologies. In January 2013, the DOE announced its latest Energy Innovation Hub, the Critical Materials Institute (CMI), which has been awarded $120 million to fund research for the next five years. Alexander King, director of Ames Laboratory, has been named director of the new Hub. The CMI brings together researchers from academia and four DOE national laboratories to col-
Photo courtesy of The Ames Laboratory, USDOE.
MRS BULLETIN
•
VOLUME 38 • APRIL 2013
•
www.mrs.org/bulletin
297
NEWS & ANALYSIS SCIENCE POLICY Neodymium is used in magnets—from the very small like those in ear bud speakers to the very large like those in wind turbines and electric vehicle motors. These latter two clean energy technologies use huge amounts of neodymium, vastly increasing demand for the resource. Policy decisions will have a significant impact on the deploymen
Data Loading...