Host-induced silencing of the Colletotrichum gloeosporioides conidial morphology 1 gene ( CgCOM1 ) confers resistance ag

  • PDF / 2,482,471 Bytes
  • 15 Pages / 595.276 x 790.866 pts Page_size
  • 65 Downloads / 190 Views

DOWNLOAD

REPORT


Host-induced silencing of the Colletotrichum gloeosporioides conidial morphology 1 gene (CgCOM1) confers resistance against Anthracnose disease in chilli and tomato Binod Kumar Mahto1,2 · Anjulata Singh1,2 · Manish Pareek3 · Manchikatla V. Rajam3 · Swatismita Dhar‑Ray2 · Pallavolu M. Reddy2  Received: 15 January 2020 / Accepted: 6 August 2020 © Springer Nature B.V. 2020

Abstract Key message  Host mediated silencing of COM1 gene of Colletotrichum gloeosporioides disables appressorial differentiation and effectively prevents the development of Anthracnose disease in chilli and tomato. Abstract  Anthracnose disease is caused by the ascomycetes fungal species Colletotrichum, which is responsible for heavy yield losses in chilli and tomato worldwide. Conventionally, harmful pesticides are used to contain anthracnose disease with limited success. In this study, we assessed the potential of Host-Induced Gene Silencing (HIGS) approach to target the Colletotrichum gloeosporioides COM1 (CgCOM1) developmental gene involved in the fungal conidial and appressorium formation, to restrict fungal infection in chilli and tomato fruits. For this study, we have developed stable transgenic lines of chilli and tomato expressing CgCOM1-RNAi construct employing Agrobacterium-mediated transformation. Transgenic plants were characterized by molecular and gene expression analyses. Production of specific CgCOM1 siRNA in transgenic chilli and tomato RNAi lines was confirmed by stem-loop RT-PCR. Fungal challenge assays on leaves and fruits showed that the transgenic lines were resistant to anthracnose disease-causing C. gloeosporioides in comparison to wild type and empty-vector control plants. RT-qPCR analyses in transgenic lines revealed extremely low abundance of CgCOM1 transcripts in the C. gloeosporioides infected tissues, indicating near complete silencing of CgCOM1 gene expression in the pathogen. Microscopic examination of the Cg-challenged leaves of chilli-CgCOM1i lines revealed highly suppressed conidial germination, germ tube development, appressoria formation and mycelial growth of C. gloeosporioides, resulting in reduced infection of plant tissues. These results demonstrated highly efficient use of HIGS in silencing the expression of essential fungal developmental genes to inhibit the growth of pathogenic fungi, thus providing a highly precise approach to arrest the spread of disease. Keywords Anthracnose · Colletotrichum gloeosporioides · CgCOM1 · Host-Induced Gene Silencing (HIGS) · RNAi Electronic supplementary material  The online version of this article (doi:https​://doi.org/10.1007/s1110​3-020-01046​-3) contains supplementary material, which is available to authorized users. * Swatismita Dhar‑Ray [email protected] * Pallavolu M. Reddy [email protected] 1



TERI School of Advanced Studies, 10 Institutional Area, New Delhi 110070, India

2



The Energy and Resources Institute, Lodi Road, New Delhi 110003, India

3

Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021,