Iron availability affects West Nile virus infection in its mosquito vector

  • PDF / 1,258,870 Bytes
  • 9 Pages / 595.276 x 790.866 pts Page_size
  • 22 Downloads / 206 Views

DOWNLOAD

REPORT


RESEARCH

Open Access

Iron availability affects West Nile virus infection in its mosquito vector Jean-Bernard Duchemin and Prasad N Paradkar*

Abstract Background: Mosquitoes are responsible for transmission of viruses, including dengue, West Nile and chikungunya viruses. Female mosquitoes are infected when they blood-feed on vertebrates, a required step for oogenesis. During this process, mosquitoes encounter high iron loads. Since iron is an essential nutrient for most organisms, including pathogens, one of the defense mechanisms for the host includes sequestration of iron away from the invading pathogen. Here, we determine whether iron availability affects viral replication in mosquitoes. Methods: To elucidate effect of iron availability on mosquito cells during infection, Culex cells were treated with either ferric ammonium citrate (FAC) or the iron chelator, deferoxamine (DFX). Real time RT-PCR was performed using ferritin (heavy chain) and NRAMP as a measure of iron homeostasis in cells. To determine iron requirement for viral replication, Culex cells were knocked down for NRAMP using dsRNA. Finally, the results were validated in Culex mosquito-infection model, by treating infected mosquitoes with DFX to reduce iron levels. Results: Our results show that infection of Culex cells led to induction in levels of ferritin (heavy chain) and NRAMP mRNAs in time-dependent manner. Results also showed that treatment of cells with FAC, reduced expression of NRAMP (iron transporter) and increase levels of ferritin (heavy chain). Interestingly, increasing iron levels increased viral titers; while reducing intracellular iron levels, either by NRAMP knock-down or using DFX, reduced viral titers. The results from Culex mosquito infection showed that mosquitoes treated with DFX had reduced viral titers compared with untreated controls in midgut as well as carcass 8 days pi. Saliva from mosquitoes treated with DFX also showed reduced viral titers compared with untreated controls, indicating low viral transmission capacity. Conclusions: Our results indicate that iron is required for viral replication in mosquito cells. Mosquitoes respond to viral infection, by inducing expression of heavy chain ferritin, which sequesters available iron, reducing its availability to virus infected cells. The data indicates that heavy chain ferritin may be part of an immune mechanism of mosquitoes in response to viral infections. Keywords: West Nile virus, Mosquito, Iron, Ferritin, NRAMP, Deferoxamine

Background Mosquitoes are responsible for transmission of viruses like dengue, West Nile (WNV) and Zika viruses, which pose a huge burden on public health systems worldwide [1]. The geographic distribution of these mosquito-borne viruses is increasing due to increased travel, trade as well as global climate change [2]. Currently more than half of world’s population is at risk of getting infected with arboviruses [3]. * Correspondence: [email protected] CSIRO Health and Biosecurity, Australian Animal Health Laboratory, 5 Portarlington Road,