Pentraxin 3 promotes airway inflammation in experimental asthma
- PDF / 5,094,875 Bytes
- 10 Pages / 595.276 x 790.866 pts Page_size
- 59 Downloads / 202 Views
RESEARCH
Open Access
Pentraxin 3 promotes airway inflammation in experimental asthma Pengfei Gao1,2, Kun Tang1, Yanjiao Lu1, Zhenli Huang1, Shanshan Wang1, Meijia Wang1, Jianmiao Wang1, Jianping Zhao1* and Jungang Xie1*
Abstract Background: Pentraxin 3 (PTX3) regulates multiple aspects of innate immunity and tissue inflammation. Recently, it has been reported that PTX3 deficiency enhances interleukin (IL)-17A–dominant pulmonary inflammation in an ovalbumin (OVA)-induced mouse asthma model. However, whether PTX3 treatment would provide protection against allergic airway inflammation has not been clearly elucidated. The goal of this study was to further investigate the effect of recombinant PTX3 administration on the phenotype of asthma. Methods: C57BL/6 J mice were sensitized and challenged with OVA to induce eosinophilic asthma model, as well as sensitized with OVA plus LPS and challenged with OVA to induce neutrophilic asthma model. We evaluated effect of recombinant PTX3 on asthma phenotype through both asthma models. The bronchoalveolar lavage fluid (BALF) inflammatory cells and cytokines, airway hyperresponsiveness, and pathological alterations of the lung tissues were assessed. Results: In both eosinophilic and neutrophilic asthma models, PTX3 treatment provoked airway hyperresponsiveness, concomitant with increased inflammatory cytokines IL-4, IL-17, eotaxin, and transforming growth factor (TGF)-β1 and aggravated airway accumulation of inflammatory cells, especially eosinophils and neutrophils. In histological analysis of the lung tissue, administration of PTX3 promoted inflammatory cells infiltration, mucus production, and collagen deposition. In addition, PTX3 also significantly enhanced STAT3 phosphorylation in lung tissue. Conclusion: Our results show that exogenous PTX3 can exacerbate multiple asthmatic features by promoting both eosinophils and neutrophils lung infiltration and provide new evidence to better understand the complex role of PTX3 in allergic airway inflammation. Keywords: Asthma, Airway inflammation, Eosinophil, Neutrophil, PTX3
* Correspondence: [email protected]; [email protected] 1 Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, National Clinical Research Center of Respiratory Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China Full list of author information is available at the end of the article © The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material
Data Loading...