Advanced Control of Turbofan Engines
Advanced Control of Turbofan Engines describes the operational performance requirements of turbofan (commercial)engines from a controls systems perspective, covering industry-standard methods and research-edge advances. This book allows the reader to desi
- PDF / 6,124,518 Bytes
- 275 Pages / 439.37 x 666.142 pts Page_size
- 32 Downloads / 292 Views
Hanz Richter
Advanced Control of Turbofan Engines
123
Hanz Richter Department of Mechanical Engineering Cleveland State University Euclid Avenue 2121 44115 Cleveland, Ohio USA [email protected]
ISBN 978-1-4614-1170-3 e-ISBN 978-1-4614-1171-0 DOI 10.1007/978-1-4614-1171-0 Springer New York Dordrecht Heidelberg London Library of Congress Control Number: 2011936014 © Springer Science+Business Media, LLC 2012 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com)
In memory of my father
Preface
Gas turbine engines – in particular, turbofan engines ubiquitously installed in commercial aircraft – must be operated by means of feedback control. In a broad sense, the objective of the control system is to achieve good thrust response qualities while maintaining critical engine outputs within safety limits. The design of controllers capable of delivering this objective represents a challenging problem, even when linear models with known parameters are considered for analysis. The fact that gas turbine engine dynamics are nonlinear and subject to uncertain parameter variations adds many layers of complexity to the problem. Propulsion control systems installed in operating commercial aircraft, however, are ultimately based on classical, SISO linear compensation loops. Features have been added incrementally over the course of their development to address the exigencies of faster and more powerful, yet more reliable engine installations. Parameter variability from measurable sources – such as altitude and Mach number – has traditionally been accounted for by introducing gain scheduling, while engine safety limits have been addressed by override schemes. Both features still retain classical feedback compensation at their core. Standard engine control systems have been in use for decades, without major conceptual changes. Concurrently, many new control theories – many of them with demonstrated industrial applications – have been developed. Much control systems research is devoted to the recurrent themes of parametric uncertainty, nonlinearity, and constraints in system variables. These themes are characteristic of the most challenging control problems and certainly arise in gas turbine engines. The wide gap between the host of available advanced control technol
Data Loading...