Cell and Organ Printing
Cell and organ printing has become a hot topic of scientific pursuit. Since several early publications between 2000-2003 that demonstrated proof-of-concept, cell and organ printing has blossomed into a rich area for scientific exploration that is being pe
- PDF / 10,209,067 Bytes
- 259 Pages / 439.37 x 666.142 pts Page_size
- 45 Downloads / 184 Views
Bradley R. Ringeisen · Barry J. Spargo · Peter K. Wu Editors
Cell and Organ Printing
123
Editors Bradley R. Ringeisen Naval Research Laboratory (NRL) Div. Chemistry Code 6115 4555 Overlook Ave. SW. Washington DC 20375 USA [email protected]
Dr. Barry J. Spargo Naval Research Laboratory (NRL) Chemical Dynamics and Diagnostics Branch Code 6110 4555 Overlook Ave. SW. Washington DC 20375 USA [email protected]
Dr. Peter K. Wu Department of Physics Southern Oregon University 1250 Siskiyou Blvd Ashland, OR 97520 USA [email protected]
ISBN 978-90-481-9144-4 e-ISBN 978-90-481-9145-1 DOI 10.1007/978-90-481-9145-1 Springer Dordrecht Heidelberg London New York Library of Congress Control Number: 2010933518 © Springer Science+Business Media B.V. 2010 No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com)
Foreword
Fast forward into the future of medicine. . .not long enough for it to be in the realm of science fiction, perhaps 25–50 years. 2060 is far enough away to dream but short enough that scientists can contribute relevant research today. Will it be possible to grow replacement organs? Could a doctor who is treating someone with advanced heart disease or liver failure simply make a new heart or liver rather than waiting on a lengthy transplant list? This technology is most definitely not available now, with the exception of simple and thin tissues such as bladder membranes or skin grafts. Even these monumental accomplishments of modern medicine are not without their limitations – state-ofthe-art skin grafting procedures usually involve removing skin from other parts of the body (a limited supply), and tissue engineered bladders, while a vast improvement over the use of intestinal tissue, have hurdles before complete in vivo function is achieved. However, these successes, in combination with the growing size of organ transplant waiting lists, highlight the desire and need for organ replacement therapy to become a reality. From a monetary standpoint, tissue engineering and regenerative medicine research are now mainstream disciplines that receive nearly $200 million a year in funding from the United States alone (as of 2001; www.tissueengineering.gov). The sources vary but include the National Institutes of Health, National Science Foundation, the Defense Advanced Research Projects Agency and the Food and Drug Administration. Add this to the thriving private sector R&D budget that is estimated at $3.5+ billion per year [1], and you have a distinct economic signal pointing towards the importance of achieving organ replacement therapy. There are two major hurd
Data Loading...