Eurasian Arctic Land Cover and Land Use in a Changing Climate

This volume is a compilation of studies on interactions of land-cover/land-use change with climate in a region where the climate warming is most pronounced compared to other areas of the globe. The climate warming in the far North, and in the Arctic regio

  • PDF / 13,006,122 Bytes
  • 322 Pages / 439.37 x 666.142 pts Page_size
  • 29 Downloads / 218 Views

DOWNLOAD

REPORT


Garik Gutman · Anni Reissell Editors

Eurasian Arctic Land Cover and Land Use in a Changing Climate

123

Editors Dr. Garik Gutman NASA Headquarters 300 E. Street, SW Washington, DC 20546 USA [email protected]

Dr. Anni Reissell Department of Physics PO box 48 (Erik Palmenin aukio 1) 00014, University of Helsinki Finland [email protected]

ISBN 978-90-481-9117-8 e-ISBN 978-90-481-9118-5 DOI 10.1007/978-90-481-9118-5 Springer Dordrecht Heidelberg London New York Library of Congress Control Number: 2010937232 © Springer Science+Business Media B.V. 2011 All rights reserved for parts/chapters written by US Government employees 2011, Chapter 1 and 12. No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Cover illustration: A color composite of the MODIS vegetation continuous fields indicating the combination of tree and herbaceous vegetation cover and bare ground. Green hues indicate dominance of tree cover, blue hues indicate dominance of herbaceous vegetation (tundra), and red hues indicate bare ground. Land and national borders are shown and white areas represent ice, including the polar ice cap as recorded in September 2008. The figure is based on Goetz, et al. (this volume), with artwork by G. Fiske. The MODIS vegetation continuous fields product is available at http://glcf.umiacs.umd.edu/data/vcf/. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Changes in land cover and ocean ice in the Arctic are among the earliest indicators of the Earth’s response to climate warming. During the last period of major climatic change – the Holocene (11,700 – ca. 2000 BP) – the changes and drivers were natural. In the Antropocene (from the late eighteenth century), the current period in the Earth’s history when human activities have had a significant global impact on the Earth’s ecosystems, the changes are accompanied by the added complexity of manmade anthropogenic pollutants and green house gas emissions and man-induced land-cover changes. It is anticipated that the changes in the Arctic will be most pronounced. Also, climate change is expected to accelerate affecting both the Arctic ecosystem and the socioeconomic infrastructure. Moreover, changes in the Arctic are predicted to affect the climate and people on a global scale as the ecosystem responses to warming of the Arctic have the potential to feed back either positively or negatively to the whole climate system. Monitoring the dynamics of the circumpolar boreal forest (taiga) and Arctic tundra boundary is important for understanding the causes and consequences of changes observed in these areas. Because of the lack of in situ data due to inaccessibi