Favorable pleiotropic effects of sodium glucose cotransporter 2 inhibitors: head-to-head comparisons with dipeptidyl pep
- PDF / 2,086,301 Bytes
- 11 Pages / 595.276 x 790.866 pts Page_size
- 82 Downloads / 199 Views
ORIGINAL INVESTIGATION
Cardiovascular Diabetology Open Access
Favorable pleiotropic effects of sodium glucose cotransporter 2 inhibitors: head‑to‑head comparisons with dipeptidyl peptidase‑4 inhibitors in type 2 diabetes patients Shih‑Chieh Shao1,2, Kai‑Cheng Chang2,3, Swu‑Jane Lin4, Rong‑Nan Chien5, Ming‑Jui Hung6,7, Yuk‑Ying Chan8, Yea‑Huei Kao Yang2 and Edward Chia‑Cheng Lai2,9*
Abstract Background: Sodium glucose cotransporter 2 (SGLT2) inhibitors have shown greater reductions of cardiovascular event risks than dipeptidyl peptidase-4 (DPP4) inhibitors, whereby possible mechanisms may involve the better pleio‑ tropic effects of SGLT2 inhibitors. However, no published data are currently available to directly compare glycemic and pleiotropic effects in real-world type 2 diabetes patients initiating SGLT2 inhibitors or DPP4 inhibitors. Method: We conducted a retrospective cohort study by analyzing the Chang Gung Research Database, the larg‑ est multi-institutional electronic medical records database in Taiwan. We included patients newly receiving SGLT2 inhibitor or DPP4 inhibitor intensification therapy for type 2 diabetes from 2016 to 2017. We matched SGLT2 inhibitor users to DPP4 inhibitor users (1:4) by propensity scores to ensure comparable characteristics between the groups. We primarily evaluated 1-year post-treatment changes of hemoglobin A1c (HbA1c) after SGLT2 inhibitor or DPP4 inhibi‑ tor initiation, using two-tailed independent t-test. We also evaluated post-treatment changes in body weight, systolic blood pressure (SBP), alanine aminotransferase (ALT) and estimated glomerular filtration rate (eGFR) values, associated with SGLT2 inhibitors and DPP4 inhibitors. Results: We identified a cohort of 2028 SGLT2 inhibitors and 8112 matched DPP4 inhibitors new users. SGLT2 inhibitors and DPP4 inhibitors showed similar HbA1c reductions (− 1.0 vs. − 1.1%; P = 0.076), but patients receiving SGLT2 inhibitors had greater improvements in body weight (− 1.5 vs. − 1.0 kg; P = 0.008), SBP (− 2.5 vs. − 0.7 mmHg; P 60 and ≤ 60 ml/ min/1.73 m2 because baseline renal functions might influence the treatment effects of SGLT2 inhibitors. Finally, type 2 diabetes patients were found to be clustered into distinct sub-populations based on BMI levels [24, 25], so we compared the treatment effectiveness in non-obese patients (i.e., body mass index, BMI 0.05) (Table 1). Mean HbA1c levels for pre- and post-treatment are presented in Fig. 2. We found both SGLT2 inhibitors (− 1.0%; 95% CI − 1.10 to − 0.96) and matched DPP4 inhibitors (− 1.1%; 95% CI − 1.14 to − 1.07) decreased the HbA1c levels after 1-year intensification therapy. The reductions of HbA1c levels were similar between the SGLT2 inhibitor and matched DPP4 inhibitor groups (p = 0.076). We present the changes in pleiotropic parameters after the SGLT2 inhibitor or matched DPP4 inhibitor treatment in Fig. 2. In patients receiving SGLT2 inhibitors, the body weight, SBP and ALT values were improved by − 1.5 kg (95% CI − 1.8 to − 1.2), − 2.5 mmHg (95% CI − 3.4 to − 1
Data Loading...