Fuchsian Differential Equations With Special Emphasis on the Gauss-S
- PDF / 10,421,791 Bytes
- 230 Pages / 439.37 x 666.142 pts Page_size
- 72 Downloads / 263 Views
		    Masaaki Yoshida
 
 Fuchsian differential equations With special emphasis on the Gauss-Schwarz theory
 
 Masaaki Yoshida
 
 Fuchsian Differential Equations
 
 Asp3ds of Mathematics As~derMathematik
 
 Editor: Klas Diederich
 
 Vol. EJ:
 
 G. Hector/U. Hirsch, lntroduction to the Geometry of Foliatians, Part A
 
 Vol. E2:
 
 M. Knebusch/M. Kolster, Wittrings
 
 Vol. E3:
 
 G. Hector/U. Hirsch, lntraduction ta the Geometry of Foliations, Part B
 
 Vol. E4:
 
 M. Laska, Elliptic Curves over Number Fields with Prescribed Reduction Type
 
 Val. E5:
 
 P. Stiller, Automorphic Formsand the Picard Number of an Elliptic Surface
 
 Vol. E6:
 
 G. Faltings/G. Wüstholzet al., Rational Points (A Publication of the Max-Pianck-lnstitut für Mathematik, Bonn)
 
 Vol. E7:
 
 W. Stoll, Value Distribution Theory for Meromorph ic Maps
 
 Vol. E8:
 
 W. von Wahl, The Equations of Navier-Stokes and Abstract Parabolic Equations
 
 Val. E9:
 
 A. Haward, P.-M. Wong (Eds.), Contributians to Several Camplex Variables
 
 Vol. E10: A. J. Tromba, Seminar on New Results in Nonlinear Partial Differential Equations (A Publication of the Max-Pianck-lnstitut für Mathematik, Bonn)
 
 Vol. E11: M. Yoshida, Fuchsian Differential Equations (A Pub I ication of the Max-Pianck-1 nstitut für Mathematik, Bonn)
 
 Band D1:
 
 H. Kraft, Geometrische Methoden in der Invariantentheorie
 
 Masaaki Yoshida
 
 Fuchsian Differential Equations With Special Emphasis on the Gauss-Schwarz Theory
 
 A Publication of the Max-Pianck-lnstitut für Mathematik, Bann Adviser: Friedrich Hirzebruch
 
 Springer Fachmedien Wiesbaden GmbH
 
 Professor Masaaki Yoshida Kyushu University , Fukuoka, Japan
 
 AMS Subject Classification : 35 R 25, 35R 30, 45A05 , 45 L05, 65F 20
 
 1987 All rights reserved © Springer FachmedienWiesbaden 1987 Originally published by Friedr.Vieweg & Sohn VerlagsgesellschaftmbH, Braunschweig in 1987.
 
 No part of th is publication may be reproduced , stored in a retrieval system or transmitted in any form or by any means, electronic, mechan ical , photocopying, recording or otherwise, w ithout prior permission of the copyright holder .
 
 Produced by W. Langelüddecke , Braunschweig
 
 ISSN
 
 0179-2156
 
 ISBN 978-3-528-08971-9 ISBN 978-3-663-14115-0 (eBook) DOI 10.1007/978-3-663-14115-0
 
 Contents
 
 Introduetion Notations Part
 
 I
 
 Chapter 1 § 1.1 1.2 § 1.3 1.4 1.5 1.6
 
 Hypergeometrie Differential Equations ........... 1 Hypergeometrie Series ........................... 1 Hypergeometrie Equations ........................ 2 Contiguity Relations ............................ 3 Euler's Integral Representation ................. 5 Rarnes' Integral Representation ................ 11 Lonfluent Hypergeometrie Equations ............. 12
 
 Chapter 2 § 2.1 § 2. 2 2. 3
 
 General Theory of Differential Equations I .... 14 How to Write Differential Equations ............ 14 Cauehy's Fundamental Theorem ................... 15 Monodromy Representations of Differential Equations ....................................... 16 Regular Singularities .......................... 18 The Frobenius Method ........................... 20 Fuehsian Equations ..........		
Data Loading...
 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	