Linear Fractional Diffusion-Wave Equation for Scientists and Engineers
This book systematically presents solutions to the linear time-fractional diffusion-wave equation. It introduces the integral transform technique and discusses the properties of the Mittag-Leffler, Wright, and Mainardi functions that appear in the solutio
- PDF / 13,640,646 Bytes
- 470 Pages / 439.42 x 683.15 pts Page_size
- 92 Downloads / 233 Views
Linear Fractional Diffusion-Wave Equation for Scientists and Engineers
Yuriy Povstenko
Linear Fractional Diffusion-Wave Equation for Scientists and Engineers
Yuriy Povstenko Jan Długosz University in Częstochowa Częstochowa, Poland
ISBN 978-3-319-17953-7 ISBN 978-3-319-17954-4 (eBook) DOI 10.1007/978-3-319-17954-4 Library of Congress Control Number: 2015944697 Mathematics Subject Classification (2010): 26A33, 45K05, 35K05, 35L05 Springer Cham Heidelberg New York Dordrecht London © Springer International Publishing Switzerland 2015 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. Printed on acid-free paper Springer International Publishing AG Switzerland is part of Springer Science+Business Media (www.birkhauser-science.com)
Contents 1
Introduction
2 Mathematical Preliminaries 2.1 Integral transforms . . . . . . . . . . . . . . . . . . . . . 2.1.1 Laplace transform . . . . . . . . . . . . . . . . . 2.1.2 Exponential Fourier transform . . . . . . . . . . 2.1.3 Sin-Fourier transform . . . . . . . . . . . . . . . 2.1.4 Three-fold Fourier transform in the case of spherical symmetry . . . . . . . . . . . . . . . 2.1.5 Cos-Fourier transform . . . . . . . . . . . . . . . 2.1.6 Sin-cos-Fourier transform . . . . . . . . . . . . . 2.1.7 Finite sin-Fourier transform . . . . . . . . . . . . 2.1.8 Finite cos-Fourier transform . . . . . . . . . . . . 2.1.9 Finite sin-cos-Fourier transform . . . . . . . . . . 2.1.10 Finite sin-Fourier transform for a sphere . . . . . 2.1.11 Finite Fourier transform for 2π-periodic functions 2.1.12 Legendre transform . . . . . . . . . . . . . . . . . 2.1.13 Hankel transform . . . . . . . . . . . . . . . . . . 2.1.14 Two-fold Fourier transform in the case of axial symmetry . . . . . . . . . . . . . . . . . . . 2.1.15 Finite Hankel transform . . . . . . . . . . . . . . 2.1.16 Weber transform . . . . . . . . . . . . . . . . . . 2.2 Mittag-Leffler function . . . . . . . . . . . . . . . . . . . 2.3 Wright function and Mainardi function . . . . . . . . . .
Data Loading...