Majumdar puts materials in the context of energy systems
- PDF / 315,058 Bytes
- 2 Pages / 585 x 783 pts Page_size
- 63 Downloads / 134 Views
Energy Quarterly
Majumdar puts materials in the context of energy systems
there could be leakage of natural gas, not just in production but in pipelines and distribution and use at the endpoints. Some studies say it is less than 2%, some say it’s 9%. I think the jury’s still out, but it’s fair to say that if it’s more than 3% or 4%, it could have a worse effect on greenhouse gas emissions than the CO2 that it saves.
Interviewed by Anke Weidenkaff
Four years ago, the US government launched an agency that would transform the country’s landscape of energy. Focusing on high-risk research that would radically change the way energy is produced, stored, and distributed, the Advanced Research Projects Agency-Energy, under the direction of materials scientist Arun Majumdar, funded over 275 projects. By the time of his departure in 2012 for the position of vice president for energy at Google, Majumdar saw many of these funded projects lead to start-up companies. MRS Bulletin caught up with Majumdar at the 2013 Materials Research Society Spring Meeting. Interviewed on the stage where he would next give his plenary address on the new industrial revolution for sustainable energy, Majumdar said of his time as director, “What makes me proud is the fact that we enabled a lot of pioneers.”
MRS BULLETIN: From your experience in ARPA-E, what are the most impactful consequences of the shale gas revolution? ARUN MAJUMDAR: I know there’s a lot of euphoria about the abundance of shale gas, which is understandable; however, we must also be aware that there is uncertainty or error bars about the known reserves and the changes in production rate over time from the wells. The price of wholesale natural gas is really low, which is not sustainable in the long run. With the abundance and low price of natural gas and the high efficiency of the natural gas combined cycle engines, it is the cheapest way to produce electricity at about 5 cents/kWh. Natural gas as an inexpensive feedstock is also triggering the petrochemical manufacturing industry, which is good for our economy. The transportation sector is also being affected. Private companies are installing liquid natural gas (LNG) refueling stations every 200 miles or so on major trucking routes, and long-haul trucking companies are transitioning
to to replace diesel tanks with onboard LNG storage systems. They’re doing so for business reasons; the payback period for any additional cost is about 2–3 years for both LNG refueling stations and the trucks. For passenger cars, the key question is can we store enough compressed natural gas (CNG) for a range of 200 miles or so, at a sufficiently low additional cost so that it pays back in about five years? ARPA-E started a program called MOVE—Methane Opportunities for Vehicular Energy—to create technologies to reduce the cost of natural gas storage in the form factor required for light-duty vehicles so that you can refuel at home, because the infrastructure to create CNG refueling stations is very expensive. We have about 160,000 gasoline stations
Data Loading...